Metamath Proof Explorer


Theorem dih2dimb

Description: Extend dib2dim to isomorphism H. (Contributed by NM, 22-Sep-2014)

Ref Expression
Hypotheses dih2dimb.l ˙ = K
dih2dimb.j ˙ = join K
dih2dimb.a A = Atoms K
dih2dimb.h H = LHyp K
dih2dimb.u U = DVecH K W
dih2dimb.s ˙ = LSSum U
dih2dimb.i I = DIsoH K W
dih2dimb.k φ K HL W H
dih2dimb.p φ P A P ˙ W
dih2dimb.q φ Q A Q ˙ W
Assertion dih2dimb φ I P ˙ Q I P ˙ I Q

Proof

Step Hyp Ref Expression
1 dih2dimb.l ˙ = K
2 dih2dimb.j ˙ = join K
3 dih2dimb.a A = Atoms K
4 dih2dimb.h H = LHyp K
5 dih2dimb.u U = DVecH K W
6 dih2dimb.s ˙ = LSSum U
7 dih2dimb.i I = DIsoH K W
8 dih2dimb.k φ K HL W H
9 dih2dimb.p φ P A P ˙ W
10 dih2dimb.q φ Q A Q ˙ W
11 eqid DIsoB K W = DIsoB K W
12 1 2 3 4 5 6 11 8 9 10 dib2dim φ DIsoB K W P ˙ Q DIsoB K W P ˙ DIsoB K W Q
13 8 simpld φ K HL
14 9 simpld φ P A
15 10 simpld φ Q A
16 eqid Base K = Base K
17 16 2 3 hlatjcl K HL P A Q A P ˙ Q Base K
18 13 14 15 17 syl3anc φ P ˙ Q Base K
19 9 simprd φ P ˙ W
20 10 simprd φ Q ˙ W
21 13 hllatd φ K Lat
22 16 3 atbase P A P Base K
23 14 22 syl φ P Base K
24 16 3 atbase Q A Q Base K
25 15 24 syl φ Q Base K
26 8 simprd φ W H
27 16 4 lhpbase W H W Base K
28 26 27 syl φ W Base K
29 16 1 2 latjle12 K Lat P Base K Q Base K W Base K P ˙ W Q ˙ W P ˙ Q ˙ W
30 21 23 25 28 29 syl13anc φ P ˙ W Q ˙ W P ˙ Q ˙ W
31 19 20 30 mpbi2and φ P ˙ Q ˙ W
32 16 1 4 7 11 dihvalb K HL W H P ˙ Q Base K P ˙ Q ˙ W I P ˙ Q = DIsoB K W P ˙ Q
33 8 18 31 32 syl12anc φ I P ˙ Q = DIsoB K W P ˙ Q
34 16 1 4 7 11 dihvalb K HL W H P Base K P ˙ W I P = DIsoB K W P
35 8 23 19 34 syl12anc φ I P = DIsoB K W P
36 16 1 4 7 11 dihvalb K HL W H Q Base K Q ˙ W I Q = DIsoB K W Q
37 8 25 20 36 syl12anc φ I Q = DIsoB K W Q
38 35 37 oveq12d φ I P ˙ I Q = DIsoB K W P ˙ DIsoB K W Q
39 12 33 38 3sstr4d φ I P ˙ Q I P ˙ I Q