Metamath Proof Explorer


Theorem dihglblem5

Description: Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014)

Ref Expression
Hypotheses dihglblem5.b B=BaseK
dihglblem5.g G=glbK
dihglblem5.h H=LHypK
dihglblem5.u U=DVecHKW
dihglblem5.i I=DIsoHKW
dihglblem5.s S=LSubSpU
Assertion dihglblem5 KHLWHTBTxTIxS

Proof

Step Hyp Ref Expression
1 dihglblem5.b B=BaseK
2 dihglblem5.g G=glbK
3 dihglblem5.h H=LHypK
4 dihglblem5.u U=DVecHKW
5 dihglblem5.i I=DIsoHKW
6 dihglblem5.s S=LSubSpU
7 fvex IxV
8 7 dfiin2 xTIx=y|xTy=Ix
9 simpl KHLWHTBTKHLWH
10 3 4 9 dvhlmod KHLWHTBTULMod
11 simpll KHLWHTBTxTKHLWH
12 simplrl KHLWHTBTxTTB
13 simpr KHLWHTBTxTxT
14 12 13 sseldd KHLWHTBTxTxB
15 1 3 5 4 6 dihlss KHLWHxBIxS
16 11 14 15 syl2anc KHLWHTBTxTIxS
17 16 ralrimiva KHLWHTBTxTIxS
18 uniiunlem xTIxSxTIxSy|xTy=IxS
19 17 18 syl KHLWHTBTxTIxSy|xTy=IxS
20 17 19 mpbid KHLWHTBTy|xTy=IxS
21 simprr KHLWHTBTT
22 n0 TxxT
23 21 22 sylib KHLWHTBTxxT
24 nfre1 xxTy=Ix
25 24 nfab _xy|xTy=Ix
26 nfcv _x
27 25 26 nfne xy|xTy=Ix
28 7 elabrex xTIxy|xTy=Ix
29 28 ne0d xTy|xTy=Ix
30 27 29 exlimi xxTy|xTy=Ix
31 23 30 syl KHLWHTBTy|xTy=Ix
32 6 lssintcl ULMody|xTy=IxSy|xTy=Ixy|xTy=IxS
33 10 20 31 32 syl3anc KHLWHTBTy|xTy=IxS
34 8 33 eqeltrid KHLWHTBTxTIxS