Metamath Proof Explorer


Theorem dihmeetALTN

Description: Isomorphism H of a lattice meet. This version does not depend on the atomisticity of the constructed vector space. TODO: Delete? (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetALT.b B=BaseK
dihmeetALT.m ˙=meetK
dihmeetALT.h H=LHypK
dihmeetALT.i I=DIsoHKW
Assertion dihmeetALTN KHLWHXBYBIX˙Y=IXIY

Proof

Step Hyp Ref Expression
1 dihmeetALT.b B=BaseK
2 dihmeetALT.m ˙=meetK
3 dihmeetALT.h H=LHypK
4 dihmeetALT.i I=DIsoHKW
5 simpl1l KHLWHXBYBXKWKHL
6 5 hllatd KHLWHXBYBXKWKLat
7 simpl2 KHLWHXBYBXKWXB
8 simpl3 KHLWHXBYBXKWYB
9 1 2 latmcom KLatXBYBX˙Y=Y˙X
10 6 7 8 9 syl3anc KHLWHXBYBXKWX˙Y=Y˙X
11 10 fveq2d KHLWHXBYBXKWIX˙Y=IY˙X
12 simpl1 KHLWHXBYBXKWKHLWH
13 simpr KHLWHXBYBXKWXKW
14 eqid K=K
15 1 14 2 3 4 dihmeetbN KHLWHYBXBXKWIY˙X=IYIX
16 12 8 7 13 15 syl112anc KHLWHXBYBXKWIY˙X=IYIX
17 incom IYIX=IXIY
18 16 17 eqtrdi KHLWHXBYBXKWIY˙X=IXIY
19 11 18 eqtrd KHLWHXBYBXKWIX˙Y=IXIY
20 simpll1 KHLWHXBYB¬XKWYKWKHLWH
21 simpll2 KHLWHXBYB¬XKWYKWXB
22 simpll3 KHLWHXBYB¬XKWYKWYB
23 simpr KHLWHXBYB¬XKWYKWYKW
24 1 14 2 3 4 dihmeetbN KHLWHXBYBYKWIX˙Y=IXIY
25 20 21 22 23 24 syl112anc KHLWHXBYB¬XKWYKWIX˙Y=IXIY
26 25 adantlr KHLWHXBYB¬XKWX˙YKWYKWIX˙Y=IXIY
27 simp1l1 KHLWHXBYB¬XKWX˙YKW¬YKWKHLWH
28 simp1l2 KHLWHXBYB¬XKWX˙YKW¬YKWXB
29 simp1r KHLWHXBYB¬XKWX˙YKW¬YKW¬XKW
30 simp1l3 KHLWHXBYB¬XKWX˙YKW¬YKWYB
31 simp3 KHLWHXBYB¬XKWX˙YKW¬YKW¬YKW
32 30 31 jca KHLWHXBYB¬XKWX˙YKW¬YKWYB¬YKW
33 simp2 KHLWHXBYB¬XKWX˙YKW¬YKWX˙YKW
34 eqid joinK=joinK
35 eqid AtomsK=AtomsK
36 eqid DVecHKW=DVecHKW
37 eqid LSSumDVecHKW=LSSumDVecHKW
38 1 14 3 34 2 35 36 37 4 dihmeetlem20N KHLWHXB¬XKWYB¬YKWX˙YKWIX˙Y=IXIY
39 27 28 29 32 33 38 syl122anc KHLWHXBYB¬XKWX˙YKW¬YKWIX˙Y=IXIY
40 39 3expa KHLWHXBYB¬XKWX˙YKW¬YKWIX˙Y=IXIY
41 26 40 pm2.61dan KHLWHXBYB¬XKWX˙YKWIX˙Y=IXIY
42 simpll1 KHLWHXBYB¬XKW¬X˙YKWKHLWH
43 simpll2 KHLWHXBYB¬XKW¬X˙YKWXB
44 simpll3 KHLWHXBYB¬XKW¬X˙YKWYB
45 simpr KHLWHXBYB¬XKW¬X˙YKW¬X˙YKW
46 1 14 2 3 4 dihmeetcN KHLWHXBYB¬X˙YKWIX˙Y=IXIY
47 42 43 44 45 46 syl121anc KHLWHXBYB¬XKW¬X˙YKWIX˙Y=IXIY
48 41 47 pm2.61dan KHLWHXBYB¬XKWIX˙Y=IXIY
49 19 48 pm2.61dan KHLWHXBYBIX˙Y=IXIY