Step |
Hyp |
Ref |
Expression |
1 |
|
dihprrn.h |
|
2 |
|
dihprrn.u |
|
3 |
|
dihprrn.v |
|
4 |
|
dihprrn.n |
|
5 |
|
dihprrn.i |
|
6 |
|
dihprrn.k |
|
7 |
|
dihprrn.x |
|
8 |
|
dihprrn.y |
|
9 |
|
dihprrnlem1.l |
|
10 |
|
dihprrnlem1.o |
|
11 |
|
dihprrnlem1.nz |
|
12 |
|
dihprrnlem1.x |
|
13 |
|
dihprrnlem1.y |
|
14 |
|
df-pr |
|
15 |
14
|
fveq2i |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
1 2 3 4 5
|
dihlsprn |
|
21 |
6 7 20
|
syl2anc |
|
22 |
16 1 5
|
dihcnvcl |
|
23 |
6 21 22
|
syl2anc |
|
24 |
23 12
|
jca |
|
25 |
18 1 2 3 10 4 5
|
dihlspsnat |
|
26 |
6 8 11 25
|
syl3anc |
|
27 |
26 13
|
jca |
|
28 |
16 9 1 17 18 2 19 5 6 24 27
|
dihjatc |
|
29 |
1 5
|
dihcnvid2 |
|
30 |
6 21 29
|
syl2anc |
|
31 |
1 2 3 4 5
|
dihlsprn |
|
32 |
6 8 31
|
syl2anc |
|
33 |
1 5
|
dihcnvid2 |
|
34 |
6 32 33
|
syl2anc |
|
35 |
30 34
|
oveq12d |
|
36 |
1 2 6
|
dvhlmod |
|
37 |
7
|
snssd |
|
38 |
8
|
snssd |
|
39 |
3 4 19
|
lsmsp2 |
|
40 |
36 37 38 39
|
syl3anc |
|
41 |
28 35 40
|
3eqtrrd |
|
42 |
15 41
|
eqtrid |
|
43 |
6
|
simpld |
|
44 |
43
|
hllatd |
|
45 |
16 1 5
|
dihcnvcl |
|
46 |
6 32 45
|
syl2anc |
|
47 |
16 17
|
latjcl |
|
48 |
44 23 46 47
|
syl3anc |
|
49 |
16 1 5
|
dihcl |
|
50 |
6 48 49
|
syl2anc |
|
51 |
42 50
|
eqeltrd |
|