Metamath Proof Explorer


Theorem dirith

Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to N . Theorem 9.4.1 of Shapiro, p. 375. See https://metamath-blog.blogspot.com/2016/05/dirichlets-theorem.html for an informal exposition. This is Metamath 100 proof #48. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Assertion dirith NAAgcdN=1p|NpA

Proof

Step Hyp Ref Expression
1 simp1 NAAgcdN=1N
2 1 nnnn0d NAAgcdN=1N0
3 2 adantr NAAgcdN=1pN0
4 eqid /N=/N
5 eqid Base/N=Base/N
6 eqid ℤRHom/N=ℤRHom/N
7 4 5 6 znzrhfo N0ℤRHom/N:ontoBase/N
8 fofn ℤRHom/N:ontoBase/NℤRHom/NFn
9 3 7 8 3syl NAAgcdN=1pℤRHom/NFn
10 prmz pp
11 10 adantl NAAgcdN=1pp
12 fniniseg ℤRHom/NFnpℤRHom/N-1ℤRHom/NApℤRHom/Np=ℤRHom/NA
13 12 baibd ℤRHom/NFnppℤRHom/N-1ℤRHom/NAℤRHom/Np=ℤRHom/NA
14 9 11 13 syl2anc NAAgcdN=1ppℤRHom/N-1ℤRHom/NAℤRHom/Np=ℤRHom/NA
15 simp2 NAAgcdN=1A
16 15 adantr NAAgcdN=1pA
17 4 6 zndvds N0pAℤRHom/Np=ℤRHom/NANpA
18 3 11 16 17 syl3anc NAAgcdN=1pℤRHom/Np=ℤRHom/NANpA
19 14 18 bitrd NAAgcdN=1ppℤRHom/N-1ℤRHom/NANpA
20 19 rabbi2dva NAAgcdN=1ℤRHom/N-1ℤRHom/NA=p|NpA
21 eqid Unit/N=Unit/N
22 simp3 NAAgcdN=1AgcdN=1
23 4 21 6 znunit N0AℤRHom/NAUnit/NAgcdN=1
24 2 15 23 syl2anc NAAgcdN=1ℤRHom/NAUnit/NAgcdN=1
25 22 24 mpbird NAAgcdN=1ℤRHom/NAUnit/N
26 eqid ℤRHom/N-1ℤRHom/NA=ℤRHom/N-1ℤRHom/NA
27 4 6 1 21 25 26 dirith2 NAAgcdN=1ℤRHom/N-1ℤRHom/NA
28 20 27 eqbrtrrd NAAgcdN=1p|NpA