Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to N . Theorem 9.4.1 of Shapiro, p. 375. See https://metamath-blog.blogspot.com/2016/05/dirichlets-theorem.html for an informal exposition. This is Metamath 100 proof #48. (Contributed by Mario Carneiro, 12-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | dirith | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | 1 | nnnn0d | |
3 | 2 | adantr | |
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 4 5 6 | znzrhfo | |
8 | fofn | |
|
9 | 3 7 8 | 3syl | |
10 | prmz | |
|
11 | 10 | adantl | |
12 | fniniseg | |
|
13 | 12 | baibd | |
14 | 9 11 13 | syl2anc | |
15 | simp2 | |
|
16 | 15 | adantr | |
17 | 4 6 | zndvds | |
18 | 3 11 16 17 | syl3anc | |
19 | 14 18 | bitrd | |
20 | 19 | rabbi2dva | |
21 | eqid | |
|
22 | simp3 | |
|
23 | 4 21 6 | znunit | |
24 | 2 15 23 | syl2anc | |
25 | 22 24 | mpbird | |
26 | eqid | |
|
27 | 4 6 1 21 25 26 | dirith2 | |
28 | 20 27 | eqbrtrrd | |