| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-disj |  | 
						
							| 2 |  | elin |  | 
						
							| 3 |  | eliun |  | 
						
							| 4 |  | eliun |  | 
						
							| 5 | 3 4 | anbi12i |  | 
						
							| 6 | 2 5 | bitri |  | 
						
							| 7 |  | nfv |  | 
						
							| 8 | 7 | rmo2 |  | 
						
							| 9 |  | an4 |  | 
						
							| 10 |  | ssralv |  | 
						
							| 11 | 10 | impcom |  | 
						
							| 12 |  | r19.29 |  | 
						
							| 13 |  | id |  | 
						
							| 14 | 13 | imp |  | 
						
							| 15 | 14 | eleq1d |  | 
						
							| 16 | 15 | biimpcd |  | 
						
							| 17 | 16 | rexlimiv |  | 
						
							| 18 | 12 17 | syl |  | 
						
							| 19 | 18 | ex |  | 
						
							| 20 | 11 19 | syl |  | 
						
							| 21 | 20 | expimpd |  | 
						
							| 22 |  | ssralv |  | 
						
							| 23 | 22 | impcom |  | 
						
							| 24 |  | r19.29 |  | 
						
							| 25 | 14 | eleq1d |  | 
						
							| 26 | 25 | biimpcd |  | 
						
							| 27 | 26 | rexlimiv |  | 
						
							| 28 | 24 27 | syl |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 23 29 | syl |  | 
						
							| 31 | 30 | expimpd |  | 
						
							| 32 | 21 31 | anim12d |  | 
						
							| 33 |  | inelcm |  | 
						
							| 34 | 32 33 | syl6 |  | 
						
							| 35 | 34 | exlimiv |  | 
						
							| 36 | 9 35 | biimtrid |  | 
						
							| 37 | 36 | expd |  | 
						
							| 38 | 8 37 | sylbi |  | 
						
							| 39 | 38 | impcom |  | 
						
							| 40 | 6 39 | biimtrid |  | 
						
							| 41 | 40 | necon2bd |  | 
						
							| 42 | 41 | impancom |  | 
						
							| 43 | 42 | 3impa |  | 
						
							| 44 | 43 | alimdv |  | 
						
							| 45 | 1 44 | biimtrid |  | 
						
							| 46 | 45 | impcom |  | 
						
							| 47 |  | eq0 |  | 
						
							| 48 | 46 47 | sylibr |  |