| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-disj |
|
| 2 |
|
elin |
|
| 3 |
|
eliun |
|
| 4 |
|
eliun |
|
| 5 |
3 4
|
anbi12i |
|
| 6 |
2 5
|
bitri |
|
| 7 |
|
nfv |
|
| 8 |
7
|
rmo2 |
|
| 9 |
|
an4 |
|
| 10 |
|
ssralv |
|
| 11 |
10
|
impcom |
|
| 12 |
|
r19.29 |
|
| 13 |
|
id |
|
| 14 |
13
|
imp |
|
| 15 |
14
|
eleq1d |
|
| 16 |
15
|
biimpcd |
|
| 17 |
16
|
rexlimiv |
|
| 18 |
12 17
|
syl |
|
| 19 |
18
|
ex |
|
| 20 |
11 19
|
syl |
|
| 21 |
20
|
expimpd |
|
| 22 |
|
ssralv |
|
| 23 |
22
|
impcom |
|
| 24 |
|
r19.29 |
|
| 25 |
14
|
eleq1d |
|
| 26 |
25
|
biimpcd |
|
| 27 |
26
|
rexlimiv |
|
| 28 |
24 27
|
syl |
|
| 29 |
28
|
ex |
|
| 30 |
23 29
|
syl |
|
| 31 |
30
|
expimpd |
|
| 32 |
21 31
|
anim12d |
|
| 33 |
|
inelcm |
|
| 34 |
32 33
|
syl6 |
|
| 35 |
34
|
exlimiv |
|
| 36 |
9 35
|
biimtrid |
|
| 37 |
36
|
expd |
|
| 38 |
8 37
|
sylbi |
|
| 39 |
38
|
impcom |
|
| 40 |
6 39
|
biimtrid |
|
| 41 |
40
|
necon2bd |
|
| 42 |
41
|
impancom |
|
| 43 |
42
|
3impa |
|
| 44 |
43
|
alimdv |
|
| 45 |
1 44
|
biimtrid |
|
| 46 |
45
|
impcom |
|
| 47 |
|
eq0 |
|
| 48 |
46 47
|
sylibr |
|