Metamath Proof Explorer


Theorem ditgsplit

Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc , there is no constraint on the ordering of the points A , B , C in the domain. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses ditgsplit.x φ X
ditgsplit.y φ Y
ditgsplit.a φ A X Y
ditgsplit.b φ B X Y
ditgsplit.c φ C X Y
ditgsplit.d φ x X Y D V
ditgsplit.i φ x X Y D 𝐿 1
Assertion ditgsplit φ A C D dx = A B D dx + B C D dx

Proof

Step Hyp Ref Expression
1 ditgsplit.x φ X
2 ditgsplit.y φ Y
3 ditgsplit.a φ A X Y
4 ditgsplit.b φ B X Y
5 ditgsplit.c φ C X Y
6 ditgsplit.d φ x X Y D V
7 ditgsplit.i φ x X Y D 𝐿 1
8 elicc2 X Y A X Y A X A A Y
9 1 2 8 syl2anc φ A X Y A X A A Y
10 3 9 mpbid φ A X A A Y
11 10 simp1d φ A
12 elicc2 X Y B X Y B X B B Y
13 1 2 12 syl2anc φ B X Y B X B B Y
14 4 13 mpbid φ B X B B Y
15 14 simp1d φ B
16 11 adantr φ A B A
17 elicc2 X Y C X Y C X C C Y
18 1 2 17 syl2anc φ C X Y C X C C Y
19 5 18 mpbid φ C X C C Y
20 19 simp1d φ C
21 20 adantr φ A B C
22 15 ad2antrr φ A B A C B
23 20 ad2antrr φ A B A C C
24 biid A B B C A B B C
25 1 2 3 4 5 6 7 24 ditgsplitlem φ A B B C A C D dx = A B D dx + B C D dx
26 25 adantlr φ A B A C B C A C D dx = A B D dx + B C D dx
27 biid A C C B A C C B
28 1 2 3 5 4 6 7 27 ditgsplitlem φ A C C B A B D dx = A C D dx + C B D dx
29 28 oveq1d φ A C C B A B D dx + B C D dx = A C D dx + C B D dx + B C D dx
30 1 2 3 5 6 7 ditgcl φ A C D dx
31 1 2 5 4 6 7 ditgcl φ C B D dx
32 1 2 4 5 6 7 ditgcl φ B C D dx
33 30 31 32 addassd φ A C D dx + C B D dx + B C D dx = A C D dx + C B D dx + B C D dx
34 1 2 5 4 6 7 ditgswap φ B C D dx = C B D dx
35 34 oveq2d φ C B D dx + B C D dx = C B D dx + C B D dx
36 31 negidd φ C B D dx + C B D dx = 0
37 35 36 eqtrd φ C B D dx + B C D dx = 0
38 37 oveq2d φ A C D dx + C B D dx + B C D dx = A C D dx + 0
39 30 addid1d φ A C D dx + 0 = A C D dx
40 33 38 39 3eqtrd φ A C D dx + C B D dx + B C D dx = A C D dx
41 40 ad2antrr φ A C C B A C D dx + C B D dx + B C D dx = A C D dx
42 29 41 eqtr2d φ A C C B A C D dx = A B D dx + B C D dx
43 42 adantllr φ A B A C C B A C D dx = A B D dx + B C D dx
44 22 23 26 43 lecasei φ A B A C A C D dx = A B D dx + B C D dx
45 40 ad2antrr φ A B C A A C D dx + C B D dx + B C D dx = A C D dx
46 ancom A B C A C A A B
47 1 2 5 3 4 6 7 46 ditgsplitlem φ A B C A C B D dx = C A D dx + A B D dx
48 47 oveq2d φ A B C A A C D dx + C B D dx = A C D dx + C A D dx + A B D dx
49 1 2 3 5 6 7 ditgswap φ C A D dx = A C D dx
50 49 oveq2d φ A C D dx + C A D dx = A C D dx + A C D dx
51 30 negidd φ A C D dx + A C D dx = 0
52 50 51 eqtrd φ A C D dx + C A D dx = 0
53 52 oveq1d φ A C D dx + C A D dx + A B D dx = 0 + A B D dx
54 1 2 5 3 6 7 ditgcl φ C A D dx
55 1 2 3 4 6 7 ditgcl φ A B D dx
56 30 54 55 addassd φ A C D dx + C A D dx + A B D dx = A C D dx + C A D dx + A B D dx
57 55 addid2d φ 0 + A B D dx = A B D dx
58 53 56 57 3eqtr3d φ A C D dx + C A D dx + A B D dx = A B D dx
59 58 ad2antrr φ A B C A A C D dx + C A D dx + A B D dx = A B D dx
60 48 59 eqtrd φ A B C A A C D dx + C B D dx = A B D dx
61 60 oveq1d φ A B C A A C D dx + C B D dx + B C D dx = A B D dx + B C D dx
62 45 61 eqtr3d φ A B C A A C D dx = A B D dx + B C D dx
63 16 21 44 62 lecasei φ A B A C D dx = A B D dx + B C D dx
64 11 adantr φ B A A
65 20 adantr φ B A C
66 biid B A A C B A A C
67 1 2 4 3 5 6 7 66 ditgsplitlem φ B A A C B C D dx = B A D dx + A C D dx
68 67 oveq2d φ B A A C A B D dx + B C D dx = A B D dx + B A D dx + A C D dx
69 1 2 3 4 6 7 ditgswap φ B A D dx = A B D dx
70 69 oveq2d φ A B D dx + B A D dx = A B D dx + A B D dx
71 55 negidd φ A B D dx + A B D dx = 0
72 70 71 eqtrd φ A B D dx + B A D dx = 0
73 72 oveq1d φ A B D dx + B A D dx + A C D dx = 0 + A C D dx
74 1 2 4 3 6 7 ditgcl φ B A D dx
75 55 74 30 addassd φ A B D dx + B A D dx + A C D dx = A B D dx + B A D dx + A C D dx
76 30 addid2d φ 0 + A C D dx = A C D dx
77 73 75 76 3eqtr3d φ A B D dx + B A D dx + A C D dx = A C D dx
78 77 ad2antrr φ B A A C A B D dx + B A D dx + A C D dx = A C D dx
79 68 78 eqtr2d φ B A A C A C D dx = A B D dx + B C D dx
80 15 ad2antrr φ B A C A B
81 20 ad2antrr φ B A C A C
82 ancom C A B C B C C A
83 1 2 4 5 3 6 7 82 ditgsplitlem φ C A B C B A D dx = B C D dx + C A D dx
84 83 oveq1d φ C A B C B A D dx + A C D dx = B C D dx + C A D dx + A C D dx
85 32 54 30 addassd φ B C D dx + C A D dx + A C D dx = B C D dx + C A D dx + A C D dx
86 1 2 5 3 6 7 ditgswap φ A C D dx = C A D dx
87 86 oveq2d φ C A D dx + A C D dx = C A D dx + C A D dx
88 54 negidd φ C A D dx + C A D dx = 0
89 87 88 eqtrd φ C A D dx + A C D dx = 0
90 89 oveq2d φ B C D dx + C A D dx + A C D dx = B C D dx + 0
91 32 addid1d φ B C D dx + 0 = B C D dx
92 85 90 91 3eqtrd φ B C D dx + C A D dx + A C D dx = B C D dx
93 92 ad2antrr φ C A B C B C D dx + C A D dx + A C D dx = B C D dx
94 84 93 eqtr2d φ C A B C B C D dx = B A D dx + A C D dx
95 94 oveq2d φ C A B C A B D dx + B C D dx = A B D dx + B A D dx + A C D dx
96 77 ad2antrr φ C A B C A B D dx + B A D dx + A C D dx = A C D dx
97 95 96 eqtr2d φ C A B C A C D dx = A B D dx + B C D dx
98 97 adantllr φ B A C A B C A C D dx = A B D dx + B C D dx
99 ancom B A C B C B B A
100 1 2 5 4 3 6 7 99 ditgsplitlem φ B A C B C A D dx = C B D dx + B A D dx
101 100 oveq1d φ B A C B C A D dx + A B D dx = C B D dx + B A D dx + A B D dx
102 31 74 55 addassd φ C B D dx + B A D dx + A B D dx = C B D dx + B A D dx + A B D dx
103 1 2 4 3 6 7 ditgswap φ A B D dx = B A D dx
104 103 oveq2d φ B A D dx + A B D dx = B A D dx + B A D dx
105 74 negidd φ B A D dx + B A D dx = 0
106 104 105 eqtrd φ B A D dx + A B D dx = 0
107 106 oveq2d φ C B D dx + B A D dx + A B D dx = C B D dx + 0
108 31 addid1d φ C B D dx + 0 = C B D dx
109 102 107 108 3eqtrd φ C B D dx + B A D dx + A B D dx = C B D dx
110 109 ad2antrr φ B A C B C B D dx + B A D dx + A B D dx = C B D dx
111 101 110 eqtr2d φ B A C B C B D dx = C A D dx + A B D dx
112 111 oveq2d φ B A C B A C D dx + C B D dx = A C D dx + C A D dx + A B D dx
113 58 ad2antrr φ B A C B A C D dx + C A D dx + A B D dx = A B D dx
114 112 113 eqtr2d φ B A C B A B D dx = A C D dx + C B D dx
115 114 oveq1d φ B A C B A B D dx + B C D dx = A C D dx + C B D dx + B C D dx
116 40 ad2antrr φ B A C B A C D dx + C B D dx + B C D dx = A C D dx
117 115 116 eqtr2d φ B A C B A C D dx = A B D dx + B C D dx
118 117 adantlr φ B A C A C B A C D dx = A B D dx + B C D dx
119 80 81 98 118 lecasei φ B A C A A C D dx = A B D dx + B C D dx
120 64 65 79 119 lecasei φ B A A C D dx = A B D dx + B C D dx
121 11 15 63 120 lecasei φ A C D dx = A B D dx + B C D dx