Metamath Proof Explorer


Theorem djuinf

Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djuinf ωAωA⊔︀A

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex2i ωAAV
3 djudoml AVAVAA⊔︀A
4 2 2 3 syl2anc ωAAA⊔︀A
5 domtr ωAAA⊔︀AωA⊔︀A
6 4 5 mpdan ωAωA⊔︀A
7 1 brrelex2i ωA⊔︀AA⊔︀AV
8 anidm AVAVAV
9 djuexb AVAVA⊔︀AV
10 8 9 bitr3i AVA⊔︀AV
11 7 10 sylibr ωA⊔︀AAV
12 domeng A⊔︀AVωA⊔︀AxωxxA⊔︀A
13 7 12 syl ωA⊔︀AωA⊔︀AxωxxA⊔︀A
14 13 ibi ωA⊔︀AxωxxA⊔︀A
15 indi x×A1𝑜×A=x×Ax1𝑜×A
16 simpr ωxxA⊔︀AxA⊔︀A
17 df-dju A⊔︀A=×A1𝑜×A
18 16 17 sseqtrdi ωxxA⊔︀Ax×A1𝑜×A
19 df-ss x×A1𝑜×Ax×A1𝑜×A=x
20 18 19 sylib ωxxA⊔︀Ax×A1𝑜×A=x
21 15 20 eqtr3id ωxxA⊔︀Ax×Ax1𝑜×A=x
22 ensym ωxxω
23 22 adantr ωxxA⊔︀Axω
24 21 23 eqbrtrd ωxxA⊔︀Ax×Ax1𝑜×Aω
25 cdainflem x×Ax1𝑜×Aωx×Aωx1𝑜×Aω
26 snex V
27 xpexg VAV×AV
28 26 27 mpan AV×AV
29 inss2 x×A×A
30 ssdomg ×AVx×A×Ax×A×A
31 28 29 30 mpisyl AVx×A×A
32 0ex V
33 xpsnen2g VAV×AA
34 32 33 mpan AV×AA
35 domentr x×A×A×AAx×AA
36 31 34 35 syl2anc AVx×AA
37 domen1 x×Aωx×AAωA
38 36 37 syl5ibcom AVx×AωωA
39 snex 1𝑜V
40 xpexg 1𝑜VAV1𝑜×AV
41 39 40 mpan AV1𝑜×AV
42 inss2 x1𝑜×A1𝑜×A
43 ssdomg 1𝑜×AVx1𝑜×A1𝑜×Ax1𝑜×A1𝑜×A
44 41 42 43 mpisyl AVx1𝑜×A1𝑜×A
45 1on 1𝑜On
46 xpsnen2g 1𝑜OnAV1𝑜×AA
47 45 46 mpan AV1𝑜×AA
48 domentr x1𝑜×A1𝑜×A1𝑜×AAx1𝑜×AA
49 44 47 48 syl2anc AVx1𝑜×AA
50 domen1 x1𝑜×Aωx1𝑜×AAωA
51 49 50 syl5ibcom AVx1𝑜×AωωA
52 38 51 jaod AVx×Aωx1𝑜×AωωA
53 25 52 syl5 AVx×Ax1𝑜×AωωA
54 24 53 syl5 AVωxxA⊔︀AωA
55 54 exlimdv AVxωxxA⊔︀AωA
56 11 14 55 sylc ωA⊔︀AωA
57 6 56 impbii ωAωA⊔︀A