Description: The union of a disjoint union and its inversion is the Cartesian product of an unordered pair and the union of the left and right classes of the disjoint unions. (Proposed by GL, 4-Jul-2022.) (Contributed by AV, 4-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | djuunxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuss | |
|
2 | djuss | |
|
3 | uncom | |
|
4 | 3 | xpeq2i | |
5 | 2 4 | sseqtrri | |
6 | 1 5 | unssi | |
7 | elxpi | |
|
8 | vex | |
|
9 | 8 | elpr | |
10 | elun | |
|
11 | velsn | |
|
12 | 11 | biimpri | |
13 | 12 | anim1i | |
14 | 13 | ancoms | |
15 | opelxp | |
|
16 | 14 15 | sylibr | |
17 | 16 | orcd | |
18 | elun | |
|
19 | 17 18 | sylibr | |
20 | 19 | orcd | |
21 | 20 | ex | |
22 | 12 | anim1i | |
23 | 22 | ancoms | |
24 | opelxp | |
|
25 | 23 24 | sylibr | |
26 | 25 | orcd | |
27 | 26 | olcd | |
28 | 27 | ex | |
29 | 21 28 | jaoi | |
30 | 29 | com12 | |
31 | velsn | |
|
32 | 31 | biimpri | |
33 | 32 | anim1i | |
34 | 33 | ancoms | |
35 | opelxp | |
|
36 | 34 35 | sylibr | |
37 | 36 | olcd | |
38 | 37 | olcd | |
39 | 38 | ex | |
40 | 32 | anim1i | |
41 | 40 | ancoms | |
42 | opelxp | |
|
43 | 41 42 | sylibr | |
44 | 43 | olcd | |
45 | 44 18 | sylibr | |
46 | 45 | orcd | |
47 | 46 | ex | |
48 | 39 47 | jaoi | |
49 | 48 | com12 | |
50 | 30 49 | jaoi | |
51 | 50 | imp | |
52 | 9 10 51 | syl2anb | |
53 | elun | |
|
54 | df-dju | |
|
55 | 54 | eleq2i | |
56 | df-dju | |
|
57 | 56 | eleq2i | |
58 | elun | |
|
59 | 57 58 | bitri | |
60 | 55 59 | orbi12i | |
61 | 53 60 | bitri | |
62 | 52 61 | sylibr | |
63 | 62 | adantl | |
64 | eleq1 | |
|
65 | 64 | adantr | |
66 | 63 65 | mpbird | |
67 | 66 | exlimivv | |
68 | 7 67 | syl | |
69 | 68 | ssriv | |
70 | 6 69 | eqssi | |