Metamath Proof Explorer


Theorem djuunxp

Description: The union of a disjoint union and its inversion is the Cartesian product of an unordered pair and the union of the left and right classes of the disjoint unions. (Proposed by GL, 4-Jul-2022.) (Contributed by AV, 4-Jul-2022)

Ref Expression
Assertion djuunxp A⊔︀BB⊔︀A=1𝑜×AB

Proof

Step Hyp Ref Expression
1 djuss A⊔︀B1𝑜×AB
2 djuss B⊔︀A1𝑜×BA
3 uncom AB=BA
4 3 xpeq2i 1𝑜×AB=1𝑜×BA
5 2 4 sseqtrri B⊔︀A1𝑜×AB
6 1 5 unssi A⊔︀BB⊔︀A1𝑜×AB
7 elxpi x1𝑜×AByzx=yzy1𝑜zAB
8 vex yV
9 8 elpr y1𝑜y=y=1𝑜
10 elun zABzAzB
11 velsn yy=
12 11 biimpri y=y
13 12 anim1i y=zAyzA
14 13 ancoms zAy=yzA
15 opelxp yz×AyzA
16 14 15 sylibr zAy=yz×A
17 16 orcd zAy=yz×Ayz1𝑜×B
18 elun yz×A1𝑜×Byz×Ayz1𝑜×B
19 17 18 sylibr zAy=yz×A1𝑜×B
20 19 orcd zAy=yz×A1𝑜×Byz×Byz1𝑜×A
21 20 ex zAy=yz×A1𝑜×Byz×Byz1𝑜×A
22 12 anim1i y=zByzB
23 22 ancoms zBy=yzB
24 opelxp yz×ByzB
25 23 24 sylibr zBy=yz×B
26 25 orcd zBy=yz×Byz1𝑜×A
27 26 olcd zBy=yz×A1𝑜×Byz×Byz1𝑜×A
28 27 ex zBy=yz×A1𝑜×Byz×Byz1𝑜×A
29 21 28 jaoi zAzBy=yz×A1𝑜×Byz×Byz1𝑜×A
30 29 com12 y=zAzByz×A1𝑜×Byz×Byz1𝑜×A
31 velsn y1𝑜y=1𝑜
32 31 biimpri y=1𝑜y1𝑜
33 32 anim1i y=1𝑜zAy1𝑜zA
34 33 ancoms zAy=1𝑜y1𝑜zA
35 opelxp yz1𝑜×Ay1𝑜zA
36 34 35 sylibr zAy=1𝑜yz1𝑜×A
37 36 olcd zAy=1𝑜yz×Byz1𝑜×A
38 37 olcd zAy=1𝑜yz×A1𝑜×Byz×Byz1𝑜×A
39 38 ex zAy=1𝑜yz×A1𝑜×Byz×Byz1𝑜×A
40 32 anim1i y=1𝑜zBy1𝑜zB
41 40 ancoms zBy=1𝑜y1𝑜zB
42 opelxp yz1𝑜×By1𝑜zB
43 41 42 sylibr zBy=1𝑜yz1𝑜×B
44 43 olcd zBy=1𝑜yz×Ayz1𝑜×B
45 44 18 sylibr zBy=1𝑜yz×A1𝑜×B
46 45 orcd zBy=1𝑜yz×A1𝑜×Byz×Byz1𝑜×A
47 46 ex zBy=1𝑜yz×A1𝑜×Byz×Byz1𝑜×A
48 39 47 jaoi zAzBy=1𝑜yz×A1𝑜×Byz×Byz1𝑜×A
49 48 com12 y=1𝑜zAzByz×A1𝑜×Byz×Byz1𝑜×A
50 30 49 jaoi y=y=1𝑜zAzByz×A1𝑜×Byz×Byz1𝑜×A
51 50 imp y=y=1𝑜zAzByz×A1𝑜×Byz×Byz1𝑜×A
52 9 10 51 syl2anb y1𝑜zAByz×A1𝑜×Byz×Byz1𝑜×A
53 elun yzA⊔︀BB⊔︀AyzA⊔︀ByzB⊔︀A
54 df-dju A⊔︀B=×A1𝑜×B
55 54 eleq2i yzA⊔︀Byz×A1𝑜×B
56 df-dju B⊔︀A=×B1𝑜×A
57 56 eleq2i yzB⊔︀Ayz×B1𝑜×A
58 elun yz×B1𝑜×Ayz×Byz1𝑜×A
59 57 58 bitri yzB⊔︀Ayz×Byz1𝑜×A
60 55 59 orbi12i yzA⊔︀ByzB⊔︀Ayz×A1𝑜×Byz×Byz1𝑜×A
61 53 60 bitri yzA⊔︀BB⊔︀Ayz×A1𝑜×Byz×Byz1𝑜×A
62 52 61 sylibr y1𝑜zAByzA⊔︀BB⊔︀A
63 62 adantl x=yzy1𝑜zAByzA⊔︀BB⊔︀A
64 eleq1 x=yzxA⊔︀BB⊔︀AyzA⊔︀BB⊔︀A
65 64 adantr x=yzy1𝑜zABxA⊔︀BB⊔︀AyzA⊔︀BB⊔︀A
66 63 65 mpbird x=yzy1𝑜zABxA⊔︀BB⊔︀A
67 66 exlimivv yzx=yzy1𝑜zABxA⊔︀BB⊔︀A
68 7 67 syl x1𝑜×ABxA⊔︀BB⊔︀A
69 68 ssriv 1𝑜×ABA⊔︀BB⊔︀A
70 6 69 eqssi A⊔︀BB⊔︀A=1𝑜×AB