Metamath Proof Explorer


Theorem dmatALTval

Description: The algebra of N x N diagonal matrices over a ring R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatALTval.a A=NMatR
dmatALTval.b B=BaseA
dmatALTval.0 0˙=0R
dmatALTval.d D=NDMatALTR
Assertion dmatALTval NFinRVD=A𝑠mB|iNjNijimj=0˙

Proof

Step Hyp Ref Expression
1 dmatALTval.a A=NMatR
2 dmatALTval.b B=BaseA
3 dmatALTval.0 0˙=0R
4 dmatALTval.d D=NDMatALTR
5 ovexd n=Nr=RnMatrV
6 id a=nMatra=nMatr
7 fveq2 a=nMatrBasea=BasenMatr
8 7 rabeqdv a=nMatrmBasea|injnijimj=0r=mBasenMatr|injnijimj=0r
9 6 8 oveq12d a=nMatra𝑠mBasea|injnijimj=0r=nMatr𝑠mBasenMatr|injnijimj=0r
10 9 adantl n=Nr=Ra=nMatra𝑠mBasea|injnijimj=0r=nMatr𝑠mBasenMatr|injnijimj=0r
11 5 10 csbied n=Nr=RnMatr/aa𝑠mBasea|injnijimj=0r=nMatr𝑠mBasenMatr|injnijimj=0r
12 oveq12 n=Nr=RnMatr=NMatR
13 12 1 eqtr4di n=Nr=RnMatr=A
14 13 fveq2d n=Nr=RBasenMatr=BaseA
15 14 2 eqtr4di n=Nr=RBasenMatr=B
16 simpl n=Nr=Rn=N
17 fveq2 r=R0r=0R
18 17 3 eqtr4di r=R0r=0˙
19 18 adantl n=Nr=R0r=0˙
20 19 eqeq2d n=Nr=Rimj=0rimj=0˙
21 20 imbi2d n=Nr=Rijimj=0rijimj=0˙
22 16 21 raleqbidv n=Nr=Rjnijimj=0rjNijimj=0˙
23 16 22 raleqbidv n=Nr=Rinjnijimj=0riNjNijimj=0˙
24 15 23 rabeqbidv n=Nr=RmBasenMatr|injnijimj=0r=mB|iNjNijimj=0˙
25 13 24 oveq12d n=Nr=RnMatr𝑠mBasenMatr|injnijimj=0r=A𝑠mB|iNjNijimj=0˙
26 11 25 eqtrd n=Nr=RnMatr/aa𝑠mBasea|injnijimj=0r=A𝑠mB|iNjNijimj=0˙
27 df-dmatalt DMatALT=nFin,rVnMatr/aa𝑠mBasea|injnijimj=0r
28 ovex A𝑠mB|iNjNijimj=0˙V
29 26 27 28 ovmpoa NFinRVNDMatALTR=A𝑠mB|iNjNijimj=0˙
30 4 29 eqtrid NFinRVD=A𝑠mB|iNjNijimj=0˙