Metamath Proof Explorer


Theorem dmfco

Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997)

Ref Expression
Assertion dmfco FunGAdomGAdomFGGAdomF

Proof

Step Hyp Ref Expression
1 eldm2g AdomGAdomFGyAyFG
2 opelco2g AdomGyVAyFGxAxGxyF
3 2 elvd AdomGAyFGxAxGxyF
4 3 exbidv AdomGyAyFGyxAxGxyF
5 1 4 bitrd AdomGAdomFGyxAxGxyF
6 5 adantl FunGAdomGAdomFGyxAxGxyF
7 fvex GAV
8 7 eldm2 GAdomFyGAyF
9 opeq1 x=GAxy=GAy
10 9 eleq1d x=GAxyFGAyF
11 7 10 ceqsexv xx=GAxyFGAyF
12 eqcom x=GAGA=x
13 funopfvb FunGAdomGGA=xAxG
14 12 13 bitrid FunGAdomGx=GAAxG
15 14 anbi1d FunGAdomGx=GAxyFAxGxyF
16 15 exbidv FunGAdomGxx=GAxyFxAxGxyF
17 11 16 bitr3id FunGAdomGGAyFxAxGxyF
18 17 exbidv FunGAdomGyGAyFyxAxGxyF
19 8 18 bitrid FunGAdomGGAdomFyxAxGxyF
20 6 19 bitr4d FunGAdomGAdomFGGAdomF