Metamath Proof Explorer


Theorem dmgmaddnn0

Description: If A is not a nonpositive integer and N is a nonnegative integer, then A + N is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses dmgmn0.a φA
dmgmaddnn0.n φN0
Assertion dmgmaddnn0 φA+N

Proof

Step Hyp Ref Expression
1 dmgmn0.a φA
2 dmgmaddnn0.n φN0
3 1 eldifad φA
4 2 nn0cnd φN
5 3 4 addcld φA+N
6 eldmgm AA¬A0
7 1 6 sylib φA¬A0
8 7 simprd φ¬A0
9 3 4 negdi2d φA+N=-A-N
10 9 oveq1d φ-A+N+N=A-N+N
11 3 negcld φA
12 11 4 npcand φA-N+N=A
13 10 12 eqtrd φ-A+N+N=A
14 13 adantr φA+N0-A+N+N=A
15 simpr φA+N0A+N0
16 2 adantr φA+N0N0
17 15 16 nn0addcld φA+N0-A+N+N0
18 14 17 eqeltrrd φA+N0A0
19 8 18 mtand φ¬A+N0
20 eldmgm A+NA+N¬A+N0
21 5 19 20 sylanbrc φA+N