| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexcom4 |
|
| 2 |
|
rexcom4 |
|
| 3 |
1 2
|
orbi12i |
|
| 4 |
|
19.43 |
|
| 5 |
3 4
|
bitr4i |
|
| 6 |
5
|
rexbii |
|
| 7 |
|
rexcom4 |
|
| 8 |
6 7
|
bitri |
|
| 9 |
|
simpl |
|
| 10 |
9
|
exlimiv |
|
| 11 |
|
elisset |
|
| 12 |
|
ibar |
|
| 13 |
12
|
bicomd |
|
| 14 |
13
|
exbidv |
|
| 15 |
11 14
|
syl5ibrcom |
|
| 16 |
10 15
|
impbid2 |
|
| 17 |
16
|
ralrexbid |
|
| 18 |
17
|
adantr |
|
| 19 |
|
simpl |
|
| 20 |
19
|
exlimiv |
|
| 21 |
|
elisset |
|
| 22 |
|
ibar |
|
| 23 |
22
|
bicomd |
|
| 24 |
23
|
exbidv |
|
| 25 |
21 24
|
syl5ibrcom |
|
| 26 |
20 25
|
impbid2 |
|
| 27 |
26
|
ralrexbid |
|
| 28 |
27
|
adantl |
|
| 29 |
18 28
|
orbi12d |
|
| 30 |
29
|
ralrexbid |
|
| 31 |
8 30
|
bitr3id |
|
| 32 |
|
eqeq1 |
|
| 33 |
32
|
anbi1d |
|
| 34 |
33
|
rexbidv |
|
| 35 |
|
eqeq1 |
|
| 36 |
35
|
anbi1d |
|
| 37 |
36
|
rexbidv |
|
| 38 |
34 37
|
orbi12d |
|
| 39 |
38
|
rexbidv |
|
| 40 |
39
|
dmopabelb |
|
| 41 |
40
|
elv |
|
| 42 |
|
vex |
|
| 43 |
32
|
rexbidv |
|
| 44 |
35
|
rexbidv |
|
| 45 |
43 44
|
orbi12d |
|
| 46 |
45
|
rexbidv |
|
| 47 |
42 46
|
elab |
|
| 48 |
31 41 47
|
3bitr4g |
|
| 49 |
48
|
eqrdv |
|