Metamath Proof Explorer


Theorem dnibndlem10

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem10.1 φA
dnibndlem10.2 φB
dnibndlem10.3 φA+12+2B+12
Assertion dnibndlem10 φ1BA

Proof

Step Hyp Ref Expression
1 dnibndlem10.1 φA
2 dnibndlem10.2 φB
3 dnibndlem10.3 φA+12+2B+12
4 1red φ1
5 halfre 12
6 5 a1i φ12
7 2 6 readdcld φB+12
8 reflcl B+12B+12
9 7 8 syl φB+12
10 9 6 jca φB+1212
11 resubcl B+1212B+1212
12 10 11 syl φB+1212
13 1 6 readdcld φA+12
14 reflcl A+12A+12
15 13 14 syl φA+12
16 15 6 readdcld φA+12+12
17 12 16 jca φB+1212A+12+12
18 resubcl B+1212A+12+12B+12-12-A+12+12
19 17 18 syl φB+12-12-A+12+12
20 2 1 resubcld φBA
21 15 recnd φA+12
22 2cnd φ2
23 6 recnd φ12
24 21 22 23 addsubassd φA+12+2-12=A+12+2-12
25 24 oveq1d φA+12+2-12-A+12+12=A+12+212-A+12+12
26 22 23 subcld φ212
27 21 26 23 pnpcand φA+12+212-A+12+12=2-12-12
28 22 23 23 subsub4d φ2-12-12=212+12
29 ax-1cn 1
30 2halves 112+12=1
31 29 30 ax-mp 12+12=1
32 31 a1i φ12+12=1
33 32 oveq2d φ212+12=21
34 2m1e1 21=1
35 34 a1i φ21=1
36 28 33 35 3eqtrd φ2-12-12=1
37 25 27 36 3eqtrd φA+12+2-12-A+12+12=1
38 37 eqcomd φ1=A+12+2-12-A+12+12
39 2re 2
40 39 a1i φ2
41 15 40 readdcld φA+12+2
42 41 6 jca φA+12+212
43 resubcl A+12+212A+12+2-12
44 42 43 syl φA+12+2-12
45 41 9 6 3 lesub1dd φA+12+2-12B+1212
46 44 12 16 45 lesub1dd φA+12+2-12-A+12+12B+12-12-A+12+12
47 38 46 eqbrtrd φ1B+12-12-A+12+12
48 flle B+12B+12B+12
49 7 48 syl φB+12B+12
50 9 6 2 lesubaddd φB+1212BB+12B+12
51 49 50 mpbird φB+1212B
52 fllep1 A+12A+12A+12+1
53 13 52 syl φA+12A+12+1
54 21 23 23 addassd φA+12+12+12=A+12+12+12
55 32 oveq2d φA+12+12+12=A+12+1
56 54 55 eqtrd φA+12+12+12=A+12+1
57 56 eqcomd φA+12+1=A+12+12+12
58 53 57 breqtrd φA+12A+12+12+12
59 1 16 6 leadd1d φAA+12+12A+12A+12+12+12
60 58 59 mpbird φAA+12+12
61 12 1 2 16 51 60 le2subd φB+12-12-A+12+12BA
62 4 19 20 47 61 letrd φ1BA