Metamath Proof Explorer


Theorem dnibndlem2

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem2.1 T=xx+12x
dnibndlem2.2 φA
dnibndlem2.3 φB
dnibndlem2.4 φB+12=A+12
Assertion dnibndlem2 φTBTABA

Proof

Step Hyp Ref Expression
1 dnibndlem2.1 T=xx+12x
2 dnibndlem2.2 φA
3 dnibndlem2.3 φB
4 dnibndlem2.4 φB+12=A+12
5 halfre 12
6 5 a1i φ12
7 3 6 jca φB12
8 readdcl B12B+12
9 7 8 syl φB+12
10 reflcl B+12B+12
11 9 10 syl φB+12
12 11 recnd φB+12
13 3 recnd φB
14 12 13 subcld φB+12B
15 14 abscld φB+12B
16 15 recnd φB+12B
17 4 12 eqeltrrd φA+12
18 2 recnd φA
19 17 18 subcld φA+12A
20 19 abscld φA+12A
21 20 recnd φA+12A
22 16 21 subcld φB+12BA+12A
23 22 abscld φB+12BA+12A
24 14 19 subcld φB+12-B-A+12A
25 24 abscld φB+12-B-A+12A
26 13 18 subcld φBA
27 26 abscld φBA
28 14 19 abs2difabsd φB+12BA+12AB+12-B-A+12A
29 12 18 13 nnncan1d φB+12-A-B+12B=BA
30 29 eqcomd φBA=B+12-A-B+12B
31 30 fveq2d φBA=B+12-A-B+12B
32 4 oveq1d φB+12A=A+12A
33 32 oveq1d φB+12-A-B+12B=A+12-A-B+12B
34 33 fveq2d φB+12-A-B+12B=A+12-A-B+12B
35 19 14 abssubd φA+12-A-B+12B=B+12-B-A+12A
36 31 34 35 3eqtrd φBA=B+12-B-A+12A
37 27 leidd φBABA
38 36 37 eqbrtrrd φB+12-B-A+12ABA
39 23 25 27 28 38 letrd φB+12BA+12ABA
40 1 2 3 dnibndlem1 φTBTABAB+12BA+12ABA
41 39 40 mpbird φTBTABA