Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem2.1 |
|
2 |
|
dnibndlem2.2 |
|
3 |
|
dnibndlem2.3 |
|
4 |
|
dnibndlem2.4 |
|
5 |
|
halfre |
|
6 |
5
|
a1i |
|
7 |
3 6
|
jca |
|
8 |
|
readdcl |
|
9 |
7 8
|
syl |
|
10 |
|
reflcl |
|
11 |
9 10
|
syl |
|
12 |
11
|
recnd |
|
13 |
3
|
recnd |
|
14 |
12 13
|
subcld |
|
15 |
14
|
abscld |
|
16 |
15
|
recnd |
|
17 |
4 12
|
eqeltrrd |
|
18 |
2
|
recnd |
|
19 |
17 18
|
subcld |
|
20 |
19
|
abscld |
|
21 |
20
|
recnd |
|
22 |
16 21
|
subcld |
|
23 |
22
|
abscld |
|
24 |
14 19
|
subcld |
|
25 |
24
|
abscld |
|
26 |
13 18
|
subcld |
|
27 |
26
|
abscld |
|
28 |
14 19
|
abs2difabsd |
|
29 |
12 18 13
|
nnncan1d |
|
30 |
29
|
eqcomd |
|
31 |
30
|
fveq2d |
|
32 |
4
|
oveq1d |
|
33 |
32
|
oveq1d |
|
34 |
33
|
fveq2d |
|
35 |
19 14
|
abssubd |
|
36 |
31 34 35
|
3eqtrd |
|
37 |
27
|
leidd |
|
38 |
36 37
|
eqbrtrrd |
|
39 |
23 25 27 28 38
|
letrd |
|
40 |
1 2 3
|
dnibndlem1 |
|
41 |
39 40
|
mpbird |
|