Metamath Proof Explorer


Theorem dochcl

Description: Closure of subspace orthocomplement for DVecH vector space. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dochcl.h H=LHypK
dochcl.i I=DIsoHKW
dochcl.u U=DVecHKW
dochcl.v V=BaseU
dochcl.o ˙=ocHKW
Assertion dochcl KHLWHXV˙XranI

Proof

Step Hyp Ref Expression
1 dochcl.h H=LHypK
2 dochcl.i I=DIsoHKW
3 dochcl.u U=DVecHKW
4 dochcl.v V=BaseU
5 dochcl.o ˙=ocHKW
6 eqid BaseK=BaseK
7 eqid glbK=glbK
8 eqid ocK=ocK
9 6 7 8 1 2 3 4 5 dochval KHLWHXV˙X=IocKglbKyBaseK|XIy
10 hlop KHLKOP
11 10 ad2antrr KHLWHXVKOP
12 hlclat KHLKCLat
13 12 ad2antrr KHLWHXVKCLat
14 ssrab2 yBaseK|XIyBaseK
15 6 7 clatglbcl KCLatyBaseK|XIyBaseKglbKyBaseK|XIyBaseK
16 13 14 15 sylancl KHLWHXVglbKyBaseK|XIyBaseK
17 6 8 opoccl KOPglbKyBaseK|XIyBaseKocKglbKyBaseK|XIyBaseK
18 11 16 17 syl2anc KHLWHXVocKglbKyBaseK|XIyBaseK
19 6 1 2 dihcl KHLWHocKglbKyBaseK|XIyBaseKIocKglbKyBaseK|XIyranI
20 18 19 syldan KHLWHXVIocKglbKyBaseK|XIyranI
21 9 20 eqeltrd KHLWHXV˙XranI