| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dom2d.1 |
|
| 2 |
|
dom2d.2 |
|
| 3 |
1
|
ralrimiv |
|
| 4 |
|
eqid |
|
| 5 |
4
|
fmpt |
|
| 6 |
3 5
|
sylib |
|
| 7 |
1
|
imp |
|
| 8 |
4
|
fvmpt2 |
|
| 9 |
8
|
adantll |
|
| 10 |
7 9
|
mpdan |
|
| 11 |
10
|
adantrr |
|
| 12 |
|
nfv |
|
| 13 |
|
nffvmpt1 |
|
| 14 |
13
|
nfeq1 |
|
| 15 |
12 14
|
nfim |
|
| 16 |
|
eleq1w |
|
| 17 |
16
|
anbi2d |
|
| 18 |
17
|
imbi1d |
|
| 19 |
16
|
anbi1d |
|
| 20 |
|
anidm |
|
| 21 |
19 20
|
bitrdi |
|
| 22 |
21
|
anbi2d |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
adantr |
|
| 25 |
2
|
imp |
|
| 26 |
25
|
biimparc |
|
| 27 |
24 26
|
eqeq12d |
|
| 28 |
27
|
ex |
|
| 29 |
22 28
|
sylbird |
|
| 30 |
29
|
pm5.74d |
|
| 31 |
18 30
|
bitrd |
|
| 32 |
15 31 10
|
chvarfv |
|
| 33 |
32
|
adantrl |
|
| 34 |
11 33
|
eqeq12d |
|
| 35 |
25
|
biimpd |
|
| 36 |
34 35
|
sylbid |
|
| 37 |
36
|
ralrimivva |
|
| 38 |
|
nfmpt1 |
|
| 39 |
|
nfcv |
|
| 40 |
38 39
|
dff13f |
|
| 41 |
6 37 40
|
sylanbrc |
|