Metamath Proof Explorer


Theorem domssex2

Description: A corollary of disjenex . If F is an injection from A to B then there is a right inverse g of F from B to a superset of A . (Contributed by Mario Carneiro, 7-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion domssex2 F:A1-1BAVBWgg:B1-1VgF=IA

Proof

Step Hyp Ref Expression
1 f1f F:A1-1BF:AB
2 fex2 F:ABAVBWFV
3 1 2 syl3an1 F:A1-1BAVBWFV
4 f1stres 1stBranF×𝒫ranA:BranF×𝒫ranABranF
5 difexg BWBranFV
6 5 3ad2ant3 F:A1-1BAVBWBranFV
7 snex 𝒫ranAV
8 xpexg BranFV𝒫ranAVBranF×𝒫ranAV
9 6 7 8 sylancl F:A1-1BAVBWBranF×𝒫ranAV
10 fex2 1stBranF×𝒫ranA:BranF×𝒫ranABranFBranF×𝒫ranAVBranFV1stBranF×𝒫ranAV
11 4 9 6 10 mp3an2i F:A1-1BAVBW1stBranF×𝒫ranAV
12 unexg FV1stBranF×𝒫ranAVF1stBranF×𝒫ranAV
13 3 11 12 syl2anc F:A1-1BAVBWF1stBranF×𝒫ranAV
14 cnvexg F1stBranF×𝒫ranAVF1stBranF×𝒫ranA-1V
15 13 14 syl F:A1-1BAVBWF1stBranF×𝒫ranA-1V
16 eqid F1stBranF×𝒫ranA-1=F1stBranF×𝒫ranA-1
17 16 domss2 F:A1-1BAVBWF1stBranF×𝒫ranA-1:B1-1 ontoranF1stBranF×𝒫ranA-1AranF1stBranF×𝒫ranA-1F1stBranF×𝒫ranA-1F=IA
18 17 simp1d F:A1-1BAVBWF1stBranF×𝒫ranA-1:B1-1 ontoranF1stBranF×𝒫ranA-1
19 f1of1 F1stBranF×𝒫ranA-1:B1-1 ontoranF1stBranF×𝒫ranA-1F1stBranF×𝒫ranA-1:B1-1ranF1stBranF×𝒫ranA-1
20 18 19 syl F:A1-1BAVBWF1stBranF×𝒫ranA-1:B1-1ranF1stBranF×𝒫ranA-1
21 ssv ranF1stBranF×𝒫ranA-1V
22 f1ss F1stBranF×𝒫ranA-1:B1-1ranF1stBranF×𝒫ranA-1ranF1stBranF×𝒫ranA-1VF1stBranF×𝒫ranA-1:B1-1V
23 20 21 22 sylancl F:A1-1BAVBWF1stBranF×𝒫ranA-1:B1-1V
24 17 simp3d F:A1-1BAVBWF1stBranF×𝒫ranA-1F=IA
25 23 24 jca F:A1-1BAVBWF1stBranF×𝒫ranA-1:B1-1VF1stBranF×𝒫ranA-1F=IA
26 f1eq1 g=F1stBranF×𝒫ranA-1g:B1-1VF1stBranF×𝒫ranA-1:B1-1V
27 coeq1 g=F1stBranF×𝒫ranA-1gF=F1stBranF×𝒫ranA-1F
28 27 eqeq1d g=F1stBranF×𝒫ranA-1gF=IAF1stBranF×𝒫ranA-1F=IA
29 26 28 anbi12d g=F1stBranF×𝒫ranA-1g:B1-1VgF=IAF1stBranF×𝒫ranA-1:B1-1VF1stBranF×𝒫ranA-1F=IA
30 15 25 29 spcedv F:A1-1BAVBWgg:B1-1VgF=IA