Metamath Proof Explorer


Theorem domunsncan

Description: A singleton cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypotheses domunsncan.a AV
domunsncan.b BV
Assertion domunsncan ¬AX¬BYAXBYXY

Proof

Step Hyp Ref Expression
1 domunsncan.a AV
2 domunsncan.b BV
3 ssun2 YBY
4 reldom Rel
5 4 brrelex2i AXBYBYV
6 5 adantl ¬AX¬BYAXBYBYV
7 ssexg YBYBYVYV
8 3 6 7 sylancr ¬AX¬BYAXBYYV
9 brdomi AXBYff:AX1-1BY
10 vex fV
11 10 resex fAXAV
12 simprr ¬AX¬BYYVf:AX1-1BYf:AX1-1BY
13 difss AXAAX
14 f1ores f:AX1-1BYAXAAXfAXA:AXA1-1 ontofAXA
15 12 13 14 sylancl ¬AX¬BYYVf:AX1-1BYfAXA:AXA1-1 ontofAXA
16 f1oen3g fAXAVfAXA:AXA1-1 ontofAXAAXAfAXA
17 11 15 16 sylancr ¬AX¬BYYVf:AX1-1BYAXAfAXA
18 df-f1 f:AX1-1BYf:AXBYFunf-1
19 imadif Funf-1fAXA=fAXfA
20 18 19 simplbiim f:AX1-1BYfAXA=fAXfA
21 20 ad2antll ¬AX¬BYYVf:AX1-1BYfAXA=fAXfA
22 snex BV
23 simprl ¬AX¬BYYVf:AX1-1BYYV
24 unexg BVYVBYV
25 22 23 24 sylancr ¬AX¬BYYVf:AX1-1BYBYV
26 25 difexd ¬AX¬BYYVf:AX1-1BYBYfAV
27 f1f f:AX1-1BYf:AXBY
28 fimass f:AXBYfAXBY
29 27 28 syl f:AX1-1BYfAXBY
30 29 ad2antll ¬AX¬BYYVf:AX1-1BYfAXBY
31 30 ssdifd ¬AX¬BYYVf:AX1-1BYfAXfABYfA
32 f1fn f:AX1-1BYfFnAX
33 32 ad2antll ¬AX¬BYYVf:AX1-1BYfFnAX
34 1 snid AA
35 elun1 AAAAX
36 34 35 ax-mp AAX
37 fnsnfv fFnAXAAXfA=fA
38 33 36 37 sylancl ¬AX¬BYYVf:AX1-1BYfA=fA
39 38 difeq2d ¬AX¬BYYVf:AX1-1BYBYfA=BYfA
40 31 39 sseqtrrd ¬AX¬BYYVf:AX1-1BYfAXfABYfA
41 ssdomg BYfAVfAXfABYfAfAXfABYfA
42 26 40 41 sylc ¬AX¬BYYVf:AX1-1BYfAXfABYfA
43 ffvelcdm f:AXBYAAXfABY
44 27 36 43 sylancl f:AX1-1BYfABY
45 44 ad2antll ¬AX¬BYYVf:AX1-1BYfABY
46 2 snid BB
47 elun1 BBBBY
48 46 47 mp1i ¬AX¬BYYVf:AX1-1BYBBY
49 difsnen BYVfABYBBYBYfABYB
50 25 45 48 49 syl3anc ¬AX¬BYYVf:AX1-1BYBYfABYB
51 domentr fAXfABYfABYfABYBfAXfABYB
52 42 50 51 syl2anc ¬AX¬BYYVf:AX1-1BYfAXfABYB
53 21 52 eqbrtrd ¬AX¬BYYVf:AX1-1BYfAXABYB
54 endomtr AXAfAXAfAXABYBAXABYB
55 17 53 54 syl2anc ¬AX¬BYYVf:AX1-1BYAXABYB
56 uncom AX=XA
57 56 difeq1i AXA=XAA
58 difun2 XAA=XA
59 57 58 eqtri AXA=XA
60 difsn ¬AXXA=X
61 59 60 eqtrid ¬AXAXA=X
62 61 ad2antrr ¬AX¬BYYVf:AX1-1BYAXA=X
63 uncom BY=YB
64 63 difeq1i BYB=YBB
65 difun2 YBB=YB
66 64 65 eqtri BYB=YB
67 difsn ¬BYYB=Y
68 66 67 eqtrid ¬BYBYB=Y
69 68 ad2antlr ¬AX¬BYYVf:AX1-1BYBYB=Y
70 55 62 69 3brtr3d ¬AX¬BYYVf:AX1-1BYXY
71 70 expr ¬AX¬BYYVf:AX1-1BYXY
72 71 exlimdv ¬AX¬BYYVff:AX1-1BYXY
73 9 72 syl5 ¬AX¬BYYVAXBYXY
74 73 impancom ¬AX¬BYAXBYYVXY
75 8 74 mpd ¬AX¬BYAXBYXY
76 en2sn AVBVAB
77 1 2 76 mp2an AB
78 endom ABAB
79 77 78 mp1i ¬AX¬BYXYAB
80 simpr ¬AX¬BYXYXY
81 incom BY=YB
82 disjsn YB=¬BY
83 82 biimpri ¬BYYB=
84 81 83 eqtrid ¬BYBY=
85 84 ad2antlr ¬AX¬BYXYBY=
86 undom ABXYBY=AXBY
87 79 80 85 86 syl21anc ¬AX¬BYXYAXBY
88 75 87 impbida ¬AX¬BYAXBYXY