Metamath Proof Explorer


Theorem dprdcntz

Description: The function S is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdcntz.1 φGdomDProdS
dprdcntz.2 φdomS=I
dprdcntz.3 φXI
dprdcntz.4 φYI
dprdcntz.5 φXY
dprdcntz.z Z=CntzG
Assertion dprdcntz φSXZSY

Proof

Step Hyp Ref Expression
1 dprdcntz.1 φGdomDProdS
2 dprdcntz.2 φdomS=I
3 dprdcntz.3 φXI
4 dprdcntz.4 φYI
5 dprdcntz.5 φXY
6 dprdcntz.z Z=CntzG
7 2fveq3 y=YZSy=ZSY
8 7 sseq2d y=YSXZSySXZSY
9 sneq x=Xx=X
10 9 difeq2d x=XIx=IX
11 fveq2 x=XSx=SX
12 11 sseq1d x=XSxZSySXZSy
13 10 12 raleqbidv x=XyIxSxZSyyIXSXZSy
14 1 2 dprddomcld φIV
15 eqid 0G=0G
16 eqid mrClsSubGrpG=mrClsSubGrpG
17 6 15 16 dmdprd IVdomS=IGdomDProdSGGrpS:ISubGrpGxIyIxSxZSySxmrClsSubGrpGSIx=0G
18 14 2 17 syl2anc φGdomDProdSGGrpS:ISubGrpGxIyIxSxZSySxmrClsSubGrpGSIx=0G
19 1 18 mpbid φGGrpS:ISubGrpGxIyIxSxZSySxmrClsSubGrpGSIx=0G
20 19 simp3d φxIyIxSxZSySxmrClsSubGrpGSIx=0G
21 simpl yIxSxZSySxmrClsSubGrpGSIx=0GyIxSxZSy
22 21 ralimi xIyIxSxZSySxmrClsSubGrpGSIx=0GxIyIxSxZSy
23 20 22 syl φxIyIxSxZSy
24 13 23 3 rspcdva φyIXSXZSy
25 5 necomd φYX
26 eldifsn YIXYIYX
27 4 25 26 sylanbrc φYIX
28 8 24 27 rspcdva φSXZSY