| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngmuleq0.b |  | 
						
							| 2 |  | drngmuleq0.o |  | 
						
							| 3 |  | drngmuleq0.t |  | 
						
							| 4 |  | drngmuleq0.r |  | 
						
							| 5 |  | drngmuleq0.x |  | 
						
							| 6 |  | drngmuleq0.y |  | 
						
							| 7 |  | df-ne |  | 
						
							| 8 |  | oveq2 |  | 
						
							| 9 | 8 | ad2antlr |  | 
						
							| 10 | 4 | adantr |  | 
						
							| 11 | 5 | adantr |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 1 2 3 13 14 | drnginvrl |  | 
						
							| 16 | 10 11 12 15 | syl3anc |  | 
						
							| 17 | 16 | oveq1d |  | 
						
							| 18 |  | drngring |  | 
						
							| 19 | 4 18 | syl |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 1 2 14 | drnginvrcl |  | 
						
							| 22 | 10 11 12 21 | syl3anc |  | 
						
							| 23 | 6 | adantr |  | 
						
							| 24 | 1 3 | ringass |  | 
						
							| 25 | 20 22 11 23 24 | syl13anc |  | 
						
							| 26 | 1 3 13 | ringlidm |  | 
						
							| 27 | 19 6 26 | syl2anc |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 17 25 28 | 3eqtr3d |  | 
						
							| 30 | 29 | adantlr |  | 
						
							| 31 | 19 | adantr |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 22 | adantlr |  | 
						
							| 34 | 1 3 2 | ringrz |  | 
						
							| 35 | 32 33 34 | syl2anc |  | 
						
							| 36 | 9 30 35 | 3eqtr3d |  | 
						
							| 37 | 36 | ex |  | 
						
							| 38 | 7 37 | biimtrrid |  | 
						
							| 39 | 38 | orrd |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 1 3 2 | ringlz |  | 
						
							| 42 | 19 6 41 | syl2anc |  | 
						
							| 43 |  | oveq1 |  | 
						
							| 44 | 43 | eqeq1d |  | 
						
							| 45 | 42 44 | syl5ibrcom |  | 
						
							| 46 | 1 3 2 | ringrz |  | 
						
							| 47 | 19 5 46 | syl2anc |  | 
						
							| 48 |  | oveq2 |  | 
						
							| 49 | 48 | eqeq1d |  | 
						
							| 50 | 47 49 | syl5ibrcom |  | 
						
							| 51 | 45 50 | jaod |  | 
						
							| 52 | 40 51 | impbid |  |