Metamath Proof Explorer


Theorem drngoi

Description: The properties of a division ring. (Contributed by NM, 4-Apr-2009) (New usage is discouraged.)

Ref Expression
Hypotheses drngi.1 G=1stR
drngi.2 H=2ndR
drngi.3 X=ranG
drngi.4 Z=GIdG
Assertion drngoi RDivRingOpsRRingOpsHXZ×XZGrpOp

Proof

Step Hyp Ref Expression
1 drngi.1 G=1stR
2 drngi.2 H=2ndR
3 drngi.3 X=ranG
4 drngi.4 Z=GIdG
5 opeq1 g=1stRgh=1stRh
6 5 eleq1d g=1stRghRingOps1stRhRingOps
7 id g=1stRg=1stR
8 7 1 eqtr4di g=1stRg=G
9 8 rneqd g=1stRrang=ranG
10 9 3 eqtr4di g=1stRrang=X
11 8 fveq2d g=1stRGIdg=GIdG
12 11 4 eqtr4di g=1stRGIdg=Z
13 12 sneqd g=1stRGIdg=Z
14 10 13 difeq12d g=1stRrangGIdg=XZ
15 14 sqxpeqd g=1stRrangGIdg×rangGIdg=XZ×XZ
16 15 reseq2d g=1stRhrangGIdg×rangGIdg=hXZ×XZ
17 16 eleq1d g=1stRhrangGIdg×rangGIdgGrpOphXZ×XZGrpOp
18 6 17 anbi12d g=1stRghRingOpshrangGIdg×rangGIdgGrpOp1stRhRingOpshXZ×XZGrpOp
19 opeq2 h=2ndR1stRh=1stR2ndR
20 19 eleq1d h=2ndR1stRhRingOps1stR2ndRRingOps
21 20 anbi1d h=2ndR1stRhRingOpshXZ×XZGrpOp1stR2ndRRingOpshXZ×XZGrpOp
22 id h=2ndRh=2ndR
23 2 22 eqtr4id h=2ndRH=h
24 23 reseq1d h=2ndRHXZ×XZ=hXZ×XZ
25 24 eleq1d h=2ndRHXZ×XZGrpOphXZ×XZGrpOp
26 25 anbi2d h=2ndR1stR2ndRRingOpsHXZ×XZGrpOp1stR2ndRRingOpshXZ×XZGrpOp
27 21 26 bitr4d h=2ndR1stRhRingOpshXZ×XZGrpOp1stR2ndRRingOpsHXZ×XZGrpOp
28 18 27 elopabi Rgh|ghRingOpshrangGIdg×rangGIdgGrpOp1stR2ndRRingOpsHXZ×XZGrpOp
29 df-drngo DivRingOps=gh|ghRingOpshrangGIdg×rangGIdgGrpOp
30 28 29 eleq2s RDivRingOps1stR2ndRRingOpsHXZ×XZGrpOp
31 29 relopabiv RelDivRingOps
32 1st2nd RelDivRingOpsRDivRingOpsR=1stR2ndR
33 31 32 mpan RDivRingOpsR=1stR2ndR
34 33 eleq1d RDivRingOpsRRingOps1stR2ndRRingOps
35 34 anbi1d RDivRingOpsRRingOpsHXZ×XZGrpOp1stR2ndRRingOpsHXZ×XZGrpOp
36 30 35 mpbird RDivRingOpsRRingOpsHXZ×XZGrpOp