Metamath Proof Explorer


Theorem dsmmelbas

Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmelbas.p P=S𝑠R
dsmmelbas.c C=SmR
dsmmelbas.b B=BaseP
dsmmelbas.h H=BaseC
dsmmelbas.i φIV
dsmmelbas.r φRFnI
Assertion dsmmelbas φXHXBaI|Xa0RaFin

Proof

Step Hyp Ref Expression
1 dsmmelbas.p P=S𝑠R
2 dsmmelbas.c C=SmR
3 dsmmelbas.b B=BaseP
4 dsmmelbas.h H=BaseC
5 dsmmelbas.i φIV
6 dsmmelbas.r φRFnI
7 2 fveq2i BaseC=BaseSmR
8 4 7 eqtri H=BaseSmR
9 fnex RFnIIVRV
10 6 5 9 syl2anc φRV
11 eqid bBaseS𝑠R|adomR|ba0RaFin=bBaseS𝑠R|adomR|ba0RaFin
12 11 dsmmbase RVbBaseS𝑠R|adomR|ba0RaFin=BaseSmR
13 10 12 syl φbBaseS𝑠R|adomR|ba0RaFin=BaseSmR
14 8 13 eqtr4id φH=bBaseS𝑠R|adomR|ba0RaFin
15 14 eleq2d φXHXbBaseS𝑠R|adomR|ba0RaFin
16 fveq1 b=Xba=Xa
17 16 neeq1d b=Xba0RaXa0Ra
18 17 rabbidv b=XadomR|ba0Ra=adomR|Xa0Ra
19 18 eleq1d b=XadomR|ba0RaFinadomR|Xa0RaFin
20 19 elrab XbBaseS𝑠R|adomR|ba0RaFinXBaseS𝑠RadomR|Xa0RaFin
21 1 fveq2i BaseP=BaseS𝑠R
22 3 21 eqtr2i BaseS𝑠R=B
23 22 eleq2i XBaseS𝑠RXB
24 23 a1i φXBaseS𝑠RXB
25 fndm RFnIdomR=I
26 rabeq domR=IadomR|Xa0Ra=aI|Xa0Ra
27 6 25 26 3syl φadomR|Xa0Ra=aI|Xa0Ra
28 27 eleq1d φadomR|Xa0RaFinaI|Xa0RaFin
29 24 28 anbi12d φXBaseS𝑠RadomR|Xa0RaFinXBaI|Xa0RaFin
30 20 29 bitrid φXbBaseS𝑠R|adomR|ba0RaFinXBaI|Xa0RaFin
31 15 30 bitrd φXHXBaI|Xa0RaFin