Metamath Proof Explorer


Theorem dvconst

Description: Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvconst AD×A=×0

Proof

Step Hyp Ref Expression
1 fconst6g A×A:
2 simpr2 Axzzxz
3 fvconst2g Az×Az=A
4 2 3 syldan Axzzx×Az=A
5 fvconst2g Ax×Ax=A
6 5 3ad2antr1 Axzzx×Ax=A
7 4 6 oveq12d Axzzx×Az×Ax=AA
8 subid AAA=0
9 8 adantr AxzzxAA=0
10 7 9 eqtrd Axzzx×Az×Ax=0
11 10 oveq1d Axzzx×Az×Axzx=0zx
12 simpr1 Axzzxx
13 2 12 subcld Axzzxzx
14 simpr3 Axzzxzx
15 2 12 14 subne0d Axzzxzx0
16 13 15 div0d Axzzx0zx=0
17 11 16 eqtrd Axzzx×Az×Axzx=0
18 0cn 0
19 1 17 18 dvidlem AD×A=×0