Metamath Proof Explorer


Theorem dvidlem

Description: Lemma for dvid and dvconst . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvidlem.1 φ F :
dvidlem.2 φ x z z x F z F x z x = B
dvidlem.3 B
Assertion dvidlem φ D F = × B

Proof

Step Hyp Ref Expression
1 dvidlem.1 φ F :
2 dvidlem.2 φ x z z x F z F x z x = B
3 dvidlem.3 B
4 dvfcn F : dom F
5 ssidd φ
6 5 1 5 dvbss φ dom F
7 reldv Rel F
8 simpr φ x x
9 eqid TopOpen fld = TopOpen fld
10 9 cnfldtop TopOpen fld Top
11 unicntop = TopOpen fld
12 11 ntrtop TopOpen fld Top int TopOpen fld =
13 10 12 ax-mp int TopOpen fld =
14 8 13 eleqtrrdi φ x x int TopOpen fld
15 limcresi z B lim x z B x lim x
16 ssidd φ x
17 cncfmptc B z B : cn
18 3 16 16 17 mp3an2i φ x z B : cn
19 eqidd z = x B = B
20 18 8 19 cnmptlimc φ x B z B lim x
21 15 20 sseldi φ x B z B x lim x
22 eldifsn z x z z x
23 2 3exp2 φ x z z x F z F x z x = B
24 23 imp43 φ x z z x F z F x z x = B
25 22 24 sylan2b φ x z x F z F x z x = B
26 25 mpteq2dva φ x z x F z F x z x = z x B
27 difss x
28 resmpt x z B x = z x B
29 27 28 ax-mp z B x = z x B
30 26 29 eqtr4di φ x z x F z F x z x = z B x
31 30 oveq1d φ x z x F z F x z x lim x = z B x lim x
32 21 31 eleqtrrd φ x B z x F z F x z x lim x
33 9 cnfldtopon TopOpen fld TopOn
34 33 toponrestid TopOpen fld = TopOpen fld 𝑡
35 eqid z x F z F x z x = z x F z F x z x
36 1 adantr φ x F :
37 34 9 35 16 36 16 eldv φ x x F B x int TopOpen fld B z x F z F x z x lim x
38 14 32 37 mpbir2and φ x x F B
39 releldm Rel F x F B x dom F
40 7 38 39 sylancr φ x x dom F
41 6 40 eqelssd φ dom F =
42 41 feq2d φ F : dom F F :
43 4 42 mpbii φ F :
44 43 ffnd φ F Fn
45 fnconstg B × B Fn
46 3 45 mp1i φ × B Fn
47 ffun F : dom F Fun F
48 4 47 mp1i φ x Fun F
49 funbrfvb Fun F x dom F F x = B x F B
50 48 40 49 syl2anc φ x F x = B x F B
51 38 50 mpbird φ x F x = B
52 3 a1i φ B
53 fvconst2g B x × B x = B
54 52 53 sylan φ x × B x = B
55 51 54 eqtr4d φ x F x = × B x
56 44 46 55 eqfnfvd φ D F = × B