| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvidlem.1 |
|- ( ph -> F : CC --> CC ) |
| 2 |
|
dvidlem.2 |
|- ( ( ph /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
| 3 |
|
dvidlem.3 |
|- B e. CC |
| 4 |
|
dvfcn |
|- ( CC _D F ) : dom ( CC _D F ) --> CC |
| 5 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 6 |
5 1 5
|
dvbss |
|- ( ph -> dom ( CC _D F ) C_ CC ) |
| 7 |
|
reldv |
|- Rel ( CC _D F ) |
| 8 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
| 9 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 10 |
9
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 11 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 12 |
11
|
ntrtop |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) |
| 13 |
10 12
|
ax-mp |
|- ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC |
| 14 |
8 13
|
eleqtrrdi |
|- ( ( ph /\ x e. CC ) -> x e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) ) |
| 15 |
|
limcresi |
|- ( ( z e. CC |-> B ) limCC x ) C_ ( ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) limCC x ) |
| 16 |
|
ssidd |
|- ( ( ph /\ x e. CC ) -> CC C_ CC ) |
| 17 |
|
cncfmptc |
|- ( ( B e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( z e. CC |-> B ) e. ( CC -cn-> CC ) ) |
| 18 |
3 16 16 17
|
mp3an2i |
|- ( ( ph /\ x e. CC ) -> ( z e. CC |-> B ) e. ( CC -cn-> CC ) ) |
| 19 |
|
eqidd |
|- ( z = x -> B = B ) |
| 20 |
18 8 19
|
cnmptlimc |
|- ( ( ph /\ x e. CC ) -> B e. ( ( z e. CC |-> B ) limCC x ) ) |
| 21 |
15 20
|
sselid |
|- ( ( ph /\ x e. CC ) -> B e. ( ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) limCC x ) ) |
| 22 |
|
eldifsn |
|- ( z e. ( CC \ { x } ) <-> ( z e. CC /\ z =/= x ) ) |
| 23 |
2
|
3exp2 |
|- ( ph -> ( x e. CC -> ( z e. CC -> ( z =/= x -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) ) ) ) |
| 24 |
23
|
imp43 |
|- ( ( ( ph /\ x e. CC ) /\ ( z e. CC /\ z =/= x ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
| 25 |
22 24
|
sylan2b |
|- ( ( ( ph /\ x e. CC ) /\ z e. ( CC \ { x } ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
| 26 |
25
|
mpteq2dva |
|- ( ( ph /\ x e. CC ) -> ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( CC \ { x } ) |-> B ) ) |
| 27 |
|
difss |
|- ( CC \ { x } ) C_ CC |
| 28 |
|
resmpt |
|- ( ( CC \ { x } ) C_ CC -> ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) = ( z e. ( CC \ { x } ) |-> B ) ) |
| 29 |
27 28
|
ax-mp |
|- ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) = ( z e. ( CC \ { x } ) |-> B ) |
| 30 |
26 29
|
eqtr4di |
|- ( ( ph /\ x e. CC ) -> ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) ) |
| 31 |
30
|
oveq1d |
|- ( ( ph /\ x e. CC ) -> ( ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) = ( ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) limCC x ) ) |
| 32 |
21 31
|
eleqtrrd |
|- ( ( ph /\ x e. CC ) -> B e. ( ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) |
| 33 |
9
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 34 |
33
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 35 |
|
eqid |
|- ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 36 |
1
|
adantr |
|- ( ( ph /\ x e. CC ) -> F : CC --> CC ) |
| 37 |
34 9 35 16 36 16
|
eldv |
|- ( ( ph /\ x e. CC ) -> ( x ( CC _D F ) B <-> ( x e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) /\ B e. ( ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) ) |
| 38 |
14 32 37
|
mpbir2and |
|- ( ( ph /\ x e. CC ) -> x ( CC _D F ) B ) |
| 39 |
|
releldm |
|- ( ( Rel ( CC _D F ) /\ x ( CC _D F ) B ) -> x e. dom ( CC _D F ) ) |
| 40 |
7 38 39
|
sylancr |
|- ( ( ph /\ x e. CC ) -> x e. dom ( CC _D F ) ) |
| 41 |
6 40
|
eqelssd |
|- ( ph -> dom ( CC _D F ) = CC ) |
| 42 |
41
|
feq2d |
|- ( ph -> ( ( CC _D F ) : dom ( CC _D F ) --> CC <-> ( CC _D F ) : CC --> CC ) ) |
| 43 |
4 42
|
mpbii |
|- ( ph -> ( CC _D F ) : CC --> CC ) |
| 44 |
43
|
ffnd |
|- ( ph -> ( CC _D F ) Fn CC ) |
| 45 |
|
fnconstg |
|- ( B e. CC -> ( CC X. { B } ) Fn CC ) |
| 46 |
3 45
|
mp1i |
|- ( ph -> ( CC X. { B } ) Fn CC ) |
| 47 |
|
ffun |
|- ( ( CC _D F ) : dom ( CC _D F ) --> CC -> Fun ( CC _D F ) ) |
| 48 |
4 47
|
mp1i |
|- ( ( ph /\ x e. CC ) -> Fun ( CC _D F ) ) |
| 49 |
|
funbrfvb |
|- ( ( Fun ( CC _D F ) /\ x e. dom ( CC _D F ) ) -> ( ( ( CC _D F ) ` x ) = B <-> x ( CC _D F ) B ) ) |
| 50 |
48 40 49
|
syl2anc |
|- ( ( ph /\ x e. CC ) -> ( ( ( CC _D F ) ` x ) = B <-> x ( CC _D F ) B ) ) |
| 51 |
38 50
|
mpbird |
|- ( ( ph /\ x e. CC ) -> ( ( CC _D F ) ` x ) = B ) |
| 52 |
3
|
a1i |
|- ( ph -> B e. CC ) |
| 53 |
|
fvconst2g |
|- ( ( B e. CC /\ x e. CC ) -> ( ( CC X. { B } ) ` x ) = B ) |
| 54 |
52 53
|
sylan |
|- ( ( ph /\ x e. CC ) -> ( ( CC X. { B } ) ` x ) = B ) |
| 55 |
51 54
|
eqtr4d |
|- ( ( ph /\ x e. CC ) -> ( ( CC _D F ) ` x ) = ( ( CC X. { B } ) ` x ) ) |
| 56 |
44 46 55
|
eqfnfvd |
|- ( ph -> ( CC _D F ) = ( CC X. { B } ) ) |