Description: Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsq1p.p | |
|
dvdsq1p.d | |
||
dvdsq1p.b | |
||
dvdsq1p.c | |
||
dvdsq1p.t | |
||
dvdsq1p.q | |
||
Assertion | dvdsq1p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsq1p.p | |
|
2 | dvdsq1p.d | |
|
3 | dvdsq1p.b | |
|
4 | dvdsq1p.c | |
|
5 | dvdsq1p.t | |
|
6 | dvdsq1p.q | |
|
7 | 1 3 4 | uc1pcl | |
8 | 7 | 3ad2ant3 | |
9 | 3 2 5 | dvdsr2 | |
10 | 8 9 | syl | |
11 | eqcom | |
|
12 | simprr | |
|
13 | simprl | |
|
14 | simpl1 | |
|
15 | 1 | ply1ring | |
16 | 14 15 | syl | |
17 | ringgrp | |
|
18 | 16 17 | syl | |
19 | simpl2 | |
|
20 | simpr | |
|
21 | 8 | adantr | |
22 | 3 5 | ringcl | |
23 | 16 20 21 22 | syl3anc | |
24 | eqid | |
|
25 | eqid | |
|
26 | 3 24 25 | grpsubeq0 | |
27 | 18 19 23 26 | syl3anc | |
28 | 27 | biimprd | |
29 | 28 | impr | |
30 | 29 | fveq2d | |
31 | simpl1 | |
|
32 | eqid | |
|
33 | 32 1 24 | deg1z | |
34 | 31 33 | syl | |
35 | 30 34 | eqtrd | |
36 | 32 4 | uc1pdeg | |
37 | 36 | 3adant2 | |
38 | 37 | nn0red | |
39 | 38 | adantr | |
40 | 39 | mnfltd | |
41 | 35 40 | eqbrtrd | |
42 | 6 1 3 32 25 5 4 | q1peqb | |
43 | 42 | adantr | |
44 | 13 41 43 | mpbi2and | |
45 | 44 | oveq1d | |
46 | 12 45 | eqtr4d | |
47 | 46 | expr | |
48 | 11 47 | biimtrid | |
49 | 48 | rexlimdva | |
50 | 10 49 | sylbid | |
51 | 6 1 3 4 | q1pcl | |
52 | 3 2 5 | dvdsrmul | |
53 | 8 51 52 | syl2anc | |
54 | breq2 | |
|
55 | 53 54 | syl5ibrcom | |
56 | 50 55 | impbid | |