Metamath Proof Explorer


Theorem dvdsq1p

Description: Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses dvdsq1p.p P=Poly1R
dvdsq1p.d ˙=rP
dvdsq1p.b B=BaseP
dvdsq1p.c C=Unic1pR
dvdsq1p.t ·˙=P
dvdsq1p.q Q=quot1pR
Assertion dvdsq1p RRingFBGCG˙FF=FQG·˙G

Proof

Step Hyp Ref Expression
1 dvdsq1p.p P=Poly1R
2 dvdsq1p.d ˙=rP
3 dvdsq1p.b B=BaseP
4 dvdsq1p.c C=Unic1pR
5 dvdsq1p.t ·˙=P
6 dvdsq1p.q Q=quot1pR
7 1 3 4 uc1pcl GCGB
8 7 3ad2ant3 RRingFBGCGB
9 3 2 5 dvdsr2 GBG˙FqBq·˙G=F
10 8 9 syl RRingFBGCG˙FqBq·˙G=F
11 eqcom q·˙G=FF=q·˙G
12 simprr RRingFBGCqBF=q·˙GF=q·˙G
13 simprl RRingFBGCqBF=q·˙GqB
14 simpl1 RRingFBGCqBRRing
15 1 ply1ring RRingPRing
16 14 15 syl RRingFBGCqBPRing
17 ringgrp PRingPGrp
18 16 17 syl RRingFBGCqBPGrp
19 simpl2 RRingFBGCqBFB
20 simpr RRingFBGCqBqB
21 8 adantr RRingFBGCqBGB
22 3 5 ringcl PRingqBGBq·˙GB
23 16 20 21 22 syl3anc RRingFBGCqBq·˙GB
24 eqid 0P=0P
25 eqid -P=-P
26 3 24 25 grpsubeq0 PGrpFBq·˙GBF-Pq·˙G=0PF=q·˙G
27 18 19 23 26 syl3anc RRingFBGCqBF-Pq·˙G=0PF=q·˙G
28 27 biimprd RRingFBGCqBF=q·˙GF-Pq·˙G=0P
29 28 impr RRingFBGCqBF=q·˙GF-Pq·˙G=0P
30 29 fveq2d RRingFBGCqBF=q·˙Gdeg1RF-Pq·˙G=deg1R0P
31 simpl1 RRingFBGCqBF=q·˙GRRing
32 eqid deg1R=deg1R
33 32 1 24 deg1z RRingdeg1R0P=−∞
34 31 33 syl RRingFBGCqBF=q·˙Gdeg1R0P=−∞
35 30 34 eqtrd RRingFBGCqBF=q·˙Gdeg1RF-Pq·˙G=−∞
36 32 4 uc1pdeg RRingGCdeg1RG0
37 36 3adant2 RRingFBGCdeg1RG0
38 37 nn0red RRingFBGCdeg1RG
39 38 adantr RRingFBGCqBF=q·˙Gdeg1RG
40 39 mnfltd RRingFBGCqBF=q·˙G−∞<deg1RG
41 35 40 eqbrtrd RRingFBGCqBF=q·˙Gdeg1RF-Pq·˙G<deg1RG
42 6 1 3 32 25 5 4 q1peqb RRingFBGCqBdeg1RF-Pq·˙G<deg1RGFQG=q
43 42 adantr RRingFBGCqBF=q·˙GqBdeg1RF-Pq·˙G<deg1RGFQG=q
44 13 41 43 mpbi2and RRingFBGCqBF=q·˙GFQG=q
45 44 oveq1d RRingFBGCqBF=q·˙GFQG·˙G=q·˙G
46 12 45 eqtr4d RRingFBGCqBF=q·˙GF=FQG·˙G
47 46 expr RRingFBGCqBF=q·˙GF=FQG·˙G
48 11 47 biimtrid RRingFBGCqBq·˙G=FF=FQG·˙G
49 48 rexlimdva RRingFBGCqBq·˙G=FF=FQG·˙G
50 10 49 sylbid RRingFBGCG˙FF=FQG·˙G
51 6 1 3 4 q1pcl RRingFBGCFQGB
52 3 2 5 dvdsrmul GBFQGBG˙FQG·˙G
53 8 51 52 syl2anc RRingFBGCG˙FQG·˙G
54 breq2 F=FQG·˙GG˙FG˙FQG·˙G
55 53 54 syl5ibrcom RRingFBGCF=FQG·˙GG˙F
56 50 55 impbid RRingFBGCG˙FF=FQG·˙G