Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdssq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |
|
2 | sq0i | |
|
3 | 2 | breq1d | |
4 | 1 3 | bibi12d | |
5 | nnabscl | |
|
6 | breq2 | |
|
7 | sq0i | |
|
8 | 7 | breq2d | |
9 | 6 8 | bibi12d | |
10 | nnabscl | |
|
11 | dvdssqlem | |
|
12 | 10 11 | sylan2 | |
13 | nnz | |
|
14 | simpl | |
|
15 | dvdsabsb | |
|
16 | 13 14 15 | syl2an | |
17 | nnsqcl | |
|
18 | 17 | nnzd | |
19 | zsqcl | |
|
20 | 19 | adantr | |
21 | dvdsabsb | |
|
22 | 18 20 21 | syl2an | |
23 | zcn | |
|
24 | 23 | adantr | |
25 | abssq | |
|
26 | 24 25 | syl | |
27 | 26 | breq2d | |
28 | 27 | adantl | |
29 | 22 28 | bitr4d | |
30 | 12 16 29 | 3bitr4d | |
31 | 30 | anassrs | |
32 | dvds0 | |
|
33 | zsqcl | |
|
34 | dvds0 | |
|
35 | 33 34 | syl | |
36 | 32 35 | 2thd | |
37 | 13 36 | syl | |
38 | 37 | adantr | |
39 | 9 31 38 | pm2.61ne | |
40 | 5 39 | sylan | |
41 | absdvdsb | |
|
42 | 41 | adantlr | |
43 | zsqcl | |
|
44 | 43 | adantr | |
45 | absdvdsb | |
|
46 | 44 19 45 | syl2an | |
47 | zcn | |
|
48 | abssq | |
|
49 | 47 48 | syl | |
50 | 49 | eqcomd | |
51 | 50 | adantr | |
52 | 51 | breq1d | |
53 | 52 | adantr | |
54 | 46 53 | bitrd | |
55 | 40 42 54 | 3bitr4d | |
56 | 55 | an32s | |
57 | 0dvds | |
|
58 | sqeq0 | |
|
59 | 23 58 | syl | |
60 | 57 59 | bitr4d | |
61 | 0dvds | |
|
62 | 19 61 | syl | |
63 | 60 62 | bitr4d | |
64 | 63 | adantl | |
65 | 4 56 64 | pm2.61ne | |