Metamath Proof Explorer


Theorem dvh4dimN

Description: There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dvh3dim.h H=LHypK
dvh3dim.u U=DVecHKW
dvh3dim.v V=BaseU
dvh3dim.n N=LSpanU
dvh3dim.k φKHLWH
dvh3dim.x φXV
dvh3dim.y φYV
dvh3dim2.z φZV
Assertion dvh4dimN φzV¬zNXYZ

Proof

Step Hyp Ref Expression
1 dvh3dim.h H=LHypK
2 dvh3dim.u U=DVecHKW
3 dvh3dim.v V=BaseU
4 dvh3dim.n N=LSpanU
5 dvh3dim.k φKHLWH
6 dvh3dim.x φXV
7 dvh3dim.y φYV
8 dvh3dim2.z φZV
9 1 2 3 4 5 7 8 dvh3dim φzV¬zNYZ
10 9 adantr φX=0UzV¬zNYZ
11 eqid 0U=0U
12 1 2 5 dvhlmod φULMod
13 prssi YVZVYZV
14 7 8 13 syl2anc φYZV
15 3 11 4 12 14 lspun0 φNYZ0U=NYZ
16 tprot 0UYZ=YZ0U
17 df-tp YZ0U=YZ0U
18 16 17 eqtr2i YZ0U=0UYZ
19 tpeq1 X=0UXYZ=0UYZ
20 18 19 eqtr4id X=0UYZ0U=XYZ
21 20 fveq2d X=0UNYZ0U=NXYZ
22 15 21 sylan9req φX=0UNYZ=NXYZ
23 22 eleq2d φX=0UzNYZzNXYZ
24 23 notbid φX=0U¬zNYZ¬zNXYZ
25 24 rexbidv φX=0UzV¬zNYZzV¬zNXYZ
26 10 25 mpbid φX=0UzV¬zNXYZ
27 1 2 3 4 5 6 8 dvh3dim φzV¬zNXZ
28 27 adantr φY=0UzV¬zNXZ
29 prssi XVZVXZV
30 6 8 29 syl2anc φXZV
31 3 11 4 12 30 lspun0 φNXZ0U=NXZ
32 df-tp XZ0U=XZ0U
33 tpcomb XZ0U=X0UZ
34 32 33 eqtr3i XZ0U=X0UZ
35 tpeq2 Y=0UXYZ=X0UZ
36 34 35 eqtr4id Y=0UXZ0U=XYZ
37 36 fveq2d Y=0UNXZ0U=NXYZ
38 31 37 sylan9req φY=0UNXZ=NXYZ
39 38 eleq2d φY=0UzNXZzNXYZ
40 39 notbid φY=0U¬zNXZ¬zNXYZ
41 40 rexbidv φY=0UzV¬zNXZzV¬zNXYZ
42 28 41 mpbid φY=0UzV¬zNXYZ
43 1 2 3 4 5 6 7 dvh3dim φzV¬zNXY
44 43 adantr φZ=0UzV¬zNXY
45 prssi XVYVXYV
46 6 7 45 syl2anc φXYV
47 3 11 4 12 46 lspun0 φNXY0U=NXY
48 tpeq3 Z=0UXYZ=XY0U
49 df-tp XY0U=XY0U
50 48 49 eqtr2di Z=0UXY0U=XYZ
51 50 fveq2d Z=0UNXY0U=NXYZ
52 47 51 sylan9req φZ=0UNXY=NXYZ
53 52 eleq2d φZ=0UzNXYzNXYZ
54 53 notbid φZ=0U¬zNXY¬zNXYZ
55 54 rexbidv φZ=0UzV¬zNXYzV¬zNXYZ
56 44 55 mpbid φZ=0UzV¬zNXYZ
57 5 adantr φX0UY0UZ0UKHLWH
58 6 adantr φX0UY0UZ0UXV
59 7 adantr φX0UY0UZ0UYV
60 8 adantr φX0UY0UZ0UZV
61 simpr1 φX0UY0UZ0UX0U
62 simpr2 φX0UY0UZ0UY0U
63 simpr3 φX0UY0UZ0UZ0U
64 1 2 3 4 57 58 59 60 11 61 62 63 dvh4dimlem φX0UY0UZ0UzV¬zNXYZ
65 26 42 56 64 pm2.61da3ne φzV¬zNXYZ