Metamath Proof Explorer


Theorem dvhvaddcl

Description: Closure of the vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dvhvaddcl.h H=LHypK
dvhvaddcl.t T=LTrnKW
dvhvaddcl.e E=TEndoKW
dvhvaddcl.u U=DVecHKW
dvhvaddcl.d D=ScalarU
dvhvaddcl.p ˙=+D
dvhvaddcl.a +˙=+U
Assertion dvhvaddcl KHLWHFT×EGT×EF+˙GT×E

Proof

Step Hyp Ref Expression
1 dvhvaddcl.h H=LHypK
2 dvhvaddcl.t T=LTrnKW
3 dvhvaddcl.e E=TEndoKW
4 dvhvaddcl.u U=DVecHKW
5 dvhvaddcl.d D=ScalarU
6 dvhvaddcl.p ˙=+D
7 dvhvaddcl.a +˙=+U
8 1 2 3 4 5 7 6 dvhvadd KHLWHFT×EGT×EF+˙G=1stF1stG2ndF˙2ndG
9 simpl KHLWHFT×EGT×EKHLWH
10 xp1st FT×E1stFT
11 10 ad2antrl KHLWHFT×EGT×E1stFT
12 xp1st GT×E1stGT
13 12 ad2antll KHLWHFT×EGT×E1stGT
14 1 2 ltrnco KHLWH1stFT1stGT1stF1stGT
15 9 11 13 14 syl3anc KHLWHFT×EGT×E1stF1stGT
16 eqid aE,bEcTacbc=aE,bEcTacbc
17 1 2 3 4 5 16 6 dvhfplusr KHLWH˙=aE,bEcTacbc
18 17 adantr KHLWHFT×EGT×E˙=aE,bEcTacbc
19 18 oveqd KHLWHFT×EGT×E2ndF˙2ndG=2ndFaE,bEcTacbc2ndG
20 xp2nd FT×E2ndFE
21 20 ad2antrl KHLWHFT×EGT×E2ndFE
22 xp2nd GT×E2ndGE
23 22 ad2antll KHLWHFT×EGT×E2ndGE
24 1 2 3 16 tendoplcl KHLWH2ndFE2ndGE2ndFaE,bEcTacbc2ndGE
25 9 21 23 24 syl3anc KHLWHFT×EGT×E2ndFaE,bEcTacbc2ndGE
26 19 25 eqeltrd KHLWHFT×EGT×E2ndF˙2ndGE
27 opelxpi 1stF1stGT2ndF˙2ndGE1stF1stG2ndF˙2ndGT×E
28 15 26 27 syl2anc KHLWHFT×EGT×E1stF1stG2ndF˙2ndGT×E
29 8 28 eqeltrd KHLWHFT×EGT×EF+˙GT×E