Metamath Proof Explorer


Theorem dvlog2

Description: The derivative of the complex logarithm function on the open unit ball centered at 1 , a sometimes easier region to work with than the CC \ ( -oo , 0 ] of dvlog . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypothesis dvlog2.s S=1ballabs1
Assertion dvlog2 DlogS=xS1x

Proof

Step Hyp Ref Expression
1 dvlog2.s S=1ballabs1
2 ssid
3 logf1o log:01-1 ontoranlog
4 f1of log:01-1 ontoranloglog:0ranlog
5 3 4 ax-mp log:0ranlog
6 logrncn xranlogx
7 6 ssriv ranlog
8 fss log:0ranlogranloglog:0
9 5 7 8 mp2an log:0
10 eqid −∞0=−∞0
11 10 logdmss −∞00
12 fssres log:0−∞00log−∞0:−∞0
13 9 11 12 mp2an log−∞0:−∞0
14 difss −∞0
15 cnxmet abs∞Met
16 ax-1cn 1
17 1xr 1*
18 blssm abs∞Met11*1ballabs1
19 15 16 17 18 mp3an 1ballabs1
20 1 19 eqsstri S
21 eqid TopOpenfld=TopOpenfld
22 21 cnfldtopon TopOpenfldTopOn
23 22 toponrestid TopOpenfld=TopOpenfld𝑡
24 21 23 dvres log−∞0:−∞0−∞0SDlog−∞0S=log−∞0intTopOpenfldS
25 2 13 14 20 24 mp4an Dlog−∞0S=log−∞0intTopOpenfldS
26 1 dvlog2lem S−∞0
27 resabs1 S−∞0log−∞0S=logS
28 26 27 ax-mp log−∞0S=logS
29 28 oveq2i Dlog−∞0S=DlogS
30 10 dvlog Dlog−∞0=x−∞01x
31 21 cnfldtop TopOpenfldTop
32 21 cnfldtopn TopOpenfld=MetOpenabs
33 32 blopn abs∞Met11*1ballabs1TopOpenfld
34 15 16 17 33 mp3an 1ballabs1TopOpenfld
35 1 34 eqeltri STopOpenfld
36 isopn3i TopOpenfldTopSTopOpenfldintTopOpenfldS=S
37 31 35 36 mp2an intTopOpenfldS=S
38 30 37 reseq12i log−∞0intTopOpenfldS=x−∞01xS
39 25 29 38 3eqtr3i DlogS=x−∞01xS
40 resmpt S−∞0x−∞01xS=xS1x
41 26 40 ax-mp x−∞01xS=xS1x
42 39 41 eqtri DlogS=xS1x