Metamath Proof Explorer


Theorem dvmptres2

Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s φ S
dvmptadd.a φ x X A
dvmptadd.b φ x X B V
dvmptadd.da φ dx X A dS x = x X B
dvmptres2.z φ Z X
dvmptres2.j J = K 𝑡 S
dvmptres2.k K = TopOpen fld
dvmptres2.i φ int J Z = Y
Assertion dvmptres2 φ dx Z A dS x = x Y B

Proof

Step Hyp Ref Expression
1 dvmptadd.s φ S
2 dvmptadd.a φ x X A
3 dvmptadd.b φ x X B V
4 dvmptadd.da φ dx X A dS x = x X B
5 dvmptres2.z φ Z X
6 dvmptres2.j J = K 𝑡 S
7 dvmptres2.k K = TopOpen fld
8 dvmptres2.i φ int J Z = Y
9 recnprss S S
10 1 9 syl φ S
11 2 fmpttd φ x X A : X
12 4 dmeqd φ dom dx X A dS x = dom x X B
13 3 ralrimiva φ x X B V
14 dmmptg x X B V dom x X B = X
15 13 14 syl φ dom x X B = X
16 12 15 eqtrd φ dom dx X A dS x = X
17 dvbsss dom dx X A dS x S
18 16 17 eqsstrrdi φ X S
19 5 18 sstrd φ Z S
20 7 6 dvres S x X A : X X S Z S S D x X A Z = dx X A dS x int J Z
21 10 11 18 19 20 syl22anc φ S D x X A Z = dx X A dS x int J Z
22 5 resmptd φ x X A Z = x Z A
23 22 oveq2d φ S D x X A Z = dx Z A dS x
24 4 reseq1d φ dx X A dS x int J Z = x X B int J Z
25 8 reseq2d φ x X B int J Z = x X B Y
26 7 cnfldtopon K TopOn
27 resttopon K TopOn S K 𝑡 S TopOn S
28 26 10 27 sylancr φ K 𝑡 S TopOn S
29 6 28 eqeltrid φ J TopOn S
30 topontop J TopOn S J Top
31 29 30 syl φ J Top
32 toponuni J TopOn S S = J
33 29 32 syl φ S = J
34 19 33 sseqtrd φ Z J
35 eqid J = J
36 35 ntrss2 J Top Z J int J Z Z
37 31 34 36 syl2anc φ int J Z Z
38 8 37 eqsstrrd φ Y Z
39 38 5 sstrd φ Y X
40 39 resmptd φ x X B Y = x Y B
41 24 25 40 3eqtrd φ dx X A dS x int J Z = x Y B
42 21 23 41 3eqtr3d φ dx Z A dS x = x Y B