Metamath Proof Explorer


Theorem dvresntr

Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvresntr.s φS
dvresntr.x φXS
dvresntr.f φF:X
dvresntr.j J=K𝑡S
dvresntr.k K=TopOpenfld
dvresntr.i φintJX=Y
Assertion dvresntr φSDF=SDFY

Proof

Step Hyp Ref Expression
1 dvresntr.s φS
2 dvresntr.x φXS
3 dvresntr.f φF:X
4 dvresntr.j J=K𝑡S
5 dvresntr.k K=TopOpenfld
6 dvresntr.i φintJX=Y
7 5 4 dvres SF:XXSXSSDFX=FSintJX
8 1 3 2 2 7 syl22anc φSDFX=FSintJX
9 ffn F:XFFnX
10 fnresdm FFnXFX=F
11 3 9 10 3syl φFX=F
12 11 oveq2d φSDFX=SDF
13 5 cnfldtopon KTopOn
14 resttopon KTopOnSK𝑡STopOnS
15 13 1 14 sylancr φK𝑡STopOnS
16 4 15 eqeltrid φJTopOnS
17 topontop JTopOnSJTop
18 16 17 syl φJTop
19 toponuni JTopOnSS=J
20 16 19 syl φS=J
21 2 20 sseqtrd φXJ
22 eqid J=J
23 22 ntridm JTopXJintJintJX=intJX
24 18 21 23 syl2anc φintJintJX=intJX
25 6 fveq2d φintJintJX=intJY
26 24 25 6 3eqtr3d φintJY=Y
27 26 reseq2d φFSintJY=FSY
28 22 ntrss2 JTopXJintJXX
29 18 21 28 syl2anc φintJXX
30 6 29 eqsstrrd φYX
31 30 2 sstrd φYS
32 5 4 dvres SF:XXSYSSDFY=FSintJY
33 1 3 2 31 32 syl22anc φSDFY=FSintJY
34 6 reseq2d φFSintJX=FSY
35 27 33 34 3eqtr4rd φFSintJX=SDFY
36 8 12 35 3eqtr3d φSDF=SDFY