Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvresntr.s | |
|
dvresntr.x | |
||
dvresntr.f | |
||
dvresntr.j | |
||
dvresntr.k | |
||
dvresntr.i | |
||
Assertion | dvresntr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvresntr.s | |
|
2 | dvresntr.x | |
|
3 | dvresntr.f | |
|
4 | dvresntr.j | |
|
5 | dvresntr.k | |
|
6 | dvresntr.i | |
|
7 | 5 4 | dvres | |
8 | 1 3 2 2 7 | syl22anc | |
9 | ffn | |
|
10 | fnresdm | |
|
11 | 3 9 10 | 3syl | |
12 | 11 | oveq2d | |
13 | 5 | cnfldtopon | |
14 | resttopon | |
|
15 | 13 1 14 | sylancr | |
16 | 4 15 | eqeltrid | |
17 | topontop | |
|
18 | 16 17 | syl | |
19 | toponuni | |
|
20 | 16 19 | syl | |
21 | 2 20 | sseqtrd | |
22 | eqid | |
|
23 | 22 | ntridm | |
24 | 18 21 23 | syl2anc | |
25 | 6 | fveq2d | |
26 | 24 25 6 | 3eqtr3d | |
27 | 26 | reseq2d | |
28 | 22 | ntrss2 | |
29 | 18 21 28 | syl2anc | |
30 | 6 29 | eqsstrrd | |
31 | 30 2 | sstrd | |
32 | 5 4 | dvres | |
33 | 1 3 2 31 32 | syl22anc | |
34 | 6 | reseq2d | |
35 | 27 33 34 | 3eqtr4rd | |
36 | 8 12 35 | 3eqtr3d | |