Metamath Proof Explorer


Theorem dyadf

Description: The function F returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypothesis dyadmbl.1 F=x,y0x2yx+12y
Assertion dyadf F:×02

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F=x,y0x2yx+12y
2 zre xx
3 2 adantr xy0x
4 3 lep1d xy0xx+1
5 peano2re xx+1
6 3 5 syl xy0x+1
7 2nn 2
8 nnexpcl 2y02y
9 7 8 mpan y02y
10 9 adantl xy02y
11 10 nnred xy02y
12 10 nngt0d xy00<2y
13 lediv1 xx+12y0<2yxx+1x2yx+12y
14 3 6 11 12 13 syl112anc xy0xx+1x2yx+12y
15 4 14 mpbid xy0x2yx+12y
16 df-br x2yx+12yx2yx+12y
17 15 16 sylib xy0x2yx+12y
18 nndivre x2yx2y
19 2 9 18 syl2an xy0x2y
20 2 5 syl xx+1
21 nndivre x+12yx+12y
22 20 9 21 syl2an xy0x+12y
23 19 22 opelxpd xy0x2yx+12y2
24 17 23 elind xy0x2yx+12y2
25 24 rgen2 xy0x2yx+12y2
26 1 fmpo xy0x2yx+12y2F:×02
27 25 26 mpbi F:×02