| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  | 
						
							| 2 | 1 | dyadval |  | 
						
							| 3 | 2 | fveq2d |  | 
						
							| 4 |  | df-ov |  | 
						
							| 5 | 3 4 | eqtr4di |  | 
						
							| 6 | 5 | fveq2d |  | 
						
							| 7 |  | zre |  | 
						
							| 8 |  | 2nn |  | 
						
							| 9 |  | nnexpcl |  | 
						
							| 10 | 8 9 | mpan |  | 
						
							| 11 |  | nndivre |  | 
						
							| 12 | 7 10 11 | syl2an |  | 
						
							| 13 |  | peano2re |  | 
						
							| 14 | 7 13 | syl |  | 
						
							| 15 |  | nndivre |  | 
						
							| 16 | 14 10 15 | syl2an |  | 
						
							| 17 | 7 | adantr |  | 
						
							| 18 | 17 | lep1d |  | 
						
							| 19 | 17 13 | syl |  | 
						
							| 20 | 10 | adantl |  | 
						
							| 21 | 20 | nnred |  | 
						
							| 22 | 20 | nngt0d |  | 
						
							| 23 |  | lediv1 |  | 
						
							| 24 | 17 19 21 22 23 | syl112anc |  | 
						
							| 25 | 18 24 | mpbid |  | 
						
							| 26 |  | ovolicc |  | 
						
							| 27 | 12 16 25 26 | syl3anc |  | 
						
							| 28 | 19 | recnd |  | 
						
							| 29 | 17 | recnd |  | 
						
							| 30 | 21 | recnd |  | 
						
							| 31 | 20 | nnne0d |  | 
						
							| 32 | 28 29 30 31 | divsubdird |  | 
						
							| 33 |  | ax-1cn |  | 
						
							| 34 |  | pncan2 |  | 
						
							| 35 | 29 33 34 | sylancl |  | 
						
							| 36 | 35 | oveq1d |  | 
						
							| 37 | 32 36 | eqtr3d |  | 
						
							| 38 | 6 27 37 | 3eqtrd |  |