| Step |
Hyp |
Ref |
Expression |
| 1 |
|
edgnbusgreu.e |
|
| 2 |
|
edgnbusgreu.n |
|
| 3 |
|
simpll |
|
| 4 |
1
|
eleq2i |
|
| 5 |
4
|
biimpi |
|
| 6 |
5
|
ad2antrl |
|
| 7 |
|
simprr |
|
| 8 |
|
usgredg2vtxeu |
|
| 9 |
3 6 7 8
|
syl3anc |
|
| 10 |
|
df-reu |
|
| 11 |
|
prcom |
|
| 12 |
11
|
eqeq2i |
|
| 13 |
12
|
biimpi |
|
| 14 |
13
|
eleq1d |
|
| 15 |
14
|
biimpcd |
|
| 16 |
15
|
ad2antrl |
|
| 17 |
16
|
adantld |
|
| 18 |
17
|
imp |
|
| 19 |
|
simprr |
|
| 20 |
18 19
|
jca |
|
| 21 |
|
simpl |
|
| 22 |
|
eqid |
|
| 23 |
1 22
|
usgrpredgv |
|
| 24 |
23
|
simpld |
|
| 25 |
3 21 24
|
syl2an |
|
| 26 |
|
simprr |
|
| 27 |
25 26
|
jca |
|
| 28 |
20 27
|
impbida |
|
| 29 |
28
|
eubidv |
|
| 30 |
29
|
biimpd |
|
| 31 |
10 30
|
biimtrid |
|
| 32 |
9 31
|
mpd |
|
| 33 |
2
|
eleq2i |
|
| 34 |
1
|
nbusgreledg |
|
| 35 |
33 34
|
bitrid |
|
| 36 |
35
|
anbi1d |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
37
|
eubidv |
|
| 39 |
32 38
|
mpbird |
|
| 40 |
|
df-reu |
|
| 41 |
39 40
|
sylibr |
|