| Step | Hyp | Ref | Expression | 
						
							| 1 |  | edgnbusgreu.e |  | 
						
							| 2 |  | edgnbusgreu.n |  | 
						
							| 3 |  | simpll |  | 
						
							| 4 | 1 | eleq2i |  | 
						
							| 5 | 4 | biimpi |  | 
						
							| 6 | 5 | ad2antrl |  | 
						
							| 7 |  | simprr |  | 
						
							| 8 |  | usgredg2vtxeu |  | 
						
							| 9 | 3 6 7 8 | syl3anc |  | 
						
							| 10 |  | df-reu |  | 
						
							| 11 |  | prcom |  | 
						
							| 12 | 11 | eqeq2i |  | 
						
							| 13 | 12 | biimpi |  | 
						
							| 14 | 13 | eleq1d |  | 
						
							| 15 | 14 | biimpcd |  | 
						
							| 16 | 15 | ad2antrl |  | 
						
							| 17 | 16 | adantld |  | 
						
							| 18 | 17 | imp |  | 
						
							| 19 |  | simprr |  | 
						
							| 20 | 18 19 | jca |  | 
						
							| 21 |  | simpl |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 1 22 | usgrpredgv |  | 
						
							| 24 | 23 | simpld |  | 
						
							| 25 | 3 21 24 | syl2an |  | 
						
							| 26 |  | simprr |  | 
						
							| 27 | 25 26 | jca |  | 
						
							| 28 | 20 27 | impbida |  | 
						
							| 29 | 28 | eubidv |  | 
						
							| 30 | 29 | biimpd |  | 
						
							| 31 | 10 30 | biimtrid |  | 
						
							| 32 | 9 31 | mpd |  | 
						
							| 33 | 2 | eleq2i |  | 
						
							| 34 | 1 | nbusgreledg |  | 
						
							| 35 | 33 34 | bitrid |  | 
						
							| 36 | 35 | anbi1d |  | 
						
							| 37 | 36 | ad2antrr |  | 
						
							| 38 | 37 | eubidv |  | 
						
							| 39 | 32 38 | mpbird |  | 
						
							| 40 |  | df-reu |  | 
						
							| 41 | 39 40 | sylibr |  |