Metamath Proof Explorer


Theorem edgnbusgreu

Description: For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020) (Revised by AV, 6-Jul-2022)

Ref Expression
Hypotheses edgnbusgreu.e E = Edg G
edgnbusgreu.n N = G NeighbVtx M
Assertion edgnbusgreu G USGraph M V C E M C ∃! n N C = M n

Proof

Step Hyp Ref Expression
1 edgnbusgreu.e E = Edg G
2 edgnbusgreu.n N = G NeighbVtx M
3 simpll G USGraph M V C E M C G USGraph
4 1 eleq2i C E C Edg G
5 4 biimpi C E C Edg G
6 5 ad2antrl G USGraph M V C E M C C Edg G
7 simprr G USGraph M V C E M C M C
8 usgredg2vtxeu G USGraph C Edg G M C ∃! n Vtx G C = M n
9 3 6 7 8 syl3anc G USGraph M V C E M C ∃! n Vtx G C = M n
10 df-reu ∃! n Vtx G C = M n ∃! n n Vtx G C = M n
11 prcom M n = n M
12 11 eqeq2i C = M n C = n M
13 12 biimpi C = M n C = n M
14 13 eleq1d C = M n C E n M E
15 14 biimpcd C E C = M n n M E
16 15 ad2antrl G USGraph M V C E M C C = M n n M E
17 16 adantld G USGraph M V C E M C n Vtx G C = M n n M E
18 17 imp G USGraph M V C E M C n Vtx G C = M n n M E
19 simprr G USGraph M V C E M C n Vtx G C = M n C = M n
20 18 19 jca G USGraph M V C E M C n Vtx G C = M n n M E C = M n
21 simpl n M E C = M n n M E
22 eqid Vtx G = Vtx G
23 1 22 usgrpredgv G USGraph n M E n Vtx G M Vtx G
24 23 simpld G USGraph n M E n Vtx G
25 3 21 24 syl2an G USGraph M V C E M C n M E C = M n n Vtx G
26 simprr G USGraph M V C E M C n M E C = M n C = M n
27 25 26 jca G USGraph M V C E M C n M E C = M n n Vtx G C = M n
28 20 27 impbida G USGraph M V C E M C n Vtx G C = M n n M E C = M n
29 28 eubidv G USGraph M V C E M C ∃! n n Vtx G C = M n ∃! n n M E C = M n
30 29 biimpd G USGraph M V C E M C ∃! n n Vtx G C = M n ∃! n n M E C = M n
31 10 30 syl5bi G USGraph M V C E M C ∃! n Vtx G C = M n ∃! n n M E C = M n
32 9 31 mpd G USGraph M V C E M C ∃! n n M E C = M n
33 2 eleq2i n N n G NeighbVtx M
34 1 nbusgreledg G USGraph n G NeighbVtx M n M E
35 33 34 syl5bb G USGraph n N n M E
36 35 anbi1d G USGraph n N C = M n n M E C = M n
37 36 ad2antrr G USGraph M V C E M C n N C = M n n M E C = M n
38 37 eubidv G USGraph M V C E M C ∃! n n N C = M n ∃! n n M E C = M n
39 32 38 mpbird G USGraph M V C E M C ∃! n n N C = M n
40 df-reu ∃! n N C = M n ∃! n n N C = M n
41 39 40 sylibr G USGraph M V C E M C ∃! n N C = M n