| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
|
| 2 |
|
efgval.r |
|
| 3 |
|
efgval2.m |
|
| 4 |
|
efgval2.t |
|
| 5 |
|
efgred.d |
|
| 6 |
|
efgred.s |
|
| 7 |
|
efgredlem.1 |
|
| 8 |
|
efgredlem.2 |
|
| 9 |
|
efgredlem.3 |
|
| 10 |
|
efgredlem.4 |
|
| 11 |
|
efgredlem.5 |
|
| 12 |
1 2 3 4 5 6
|
efgsval |
|
| 13 |
9 12
|
syl |
|
| 14 |
1 2 3 4 5 6
|
efgsval |
|
| 15 |
8 14
|
syl |
|
| 16 |
10 15
|
eqtr3d |
|
| 17 |
13 16
|
eqtr3d |
|
| 18 |
|
oveq1 |
|
| 19 |
|
1m1e0 |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
20
|
fveq2d |
|
| 22 |
17 21
|
sylan9eq |
|
| 23 |
10
|
eleq1d |
|
| 24 |
1 2 3 4 5 6
|
efgs1b |
|
| 25 |
8 24
|
syl |
|
| 26 |
1 2 3 4 5 6
|
efgs1b |
|
| 27 |
9 26
|
syl |
|
| 28 |
23 25 27
|
3bitr3d |
|
| 29 |
28
|
biimpa |
|
| 30 |
|
oveq1 |
|
| 31 |
30 19
|
eqtrdi |
|
| 32 |
31
|
fveq2d |
|
| 33 |
29 32
|
syl |
|
| 34 |
22 33
|
eqtr3d |
|
| 35 |
11 34
|
mtand |
|
| 36 |
1 2 3 4 5 6
|
efgsdm |
|
| 37 |
36
|
simp1bi |
|
| 38 |
|
eldifsn |
|
| 39 |
|
lennncl |
|
| 40 |
38 39
|
sylbi |
|
| 41 |
8 37 40
|
3syl |
|
| 42 |
|
elnn1uz2 |
|
| 43 |
41 42
|
sylib |
|
| 44 |
43
|
ord |
|
| 45 |
35 44
|
mpd |
|
| 46 |
|
uz2m1nn |
|
| 47 |
45 46
|
syl |
|
| 48 |
35 28
|
mtbid |
|
| 49 |
1 2 3 4 5 6
|
efgsdm |
|
| 50 |
49
|
simp1bi |
|
| 51 |
|
eldifsn |
|
| 52 |
|
lennncl |
|
| 53 |
51 52
|
sylbi |
|
| 54 |
9 50 53
|
3syl |
|
| 55 |
|
elnn1uz2 |
|
| 56 |
54 55
|
sylib |
|
| 57 |
56
|
ord |
|
| 58 |
48 57
|
mpd |
|
| 59 |
|
uz2m1nn |
|
| 60 |
58 59
|
syl |
|
| 61 |
47 60
|
jca |
|