Metamath Proof Explorer


Theorem efgredlema

Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
efgredlem.2 φAdomS
efgredlem.3 φBdomS
efgredlem.4 φSA=SB
efgredlem.5 φ¬A0=B0
Assertion efgredlema φA1B1

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
8 efgredlem.2 φAdomS
9 efgredlem.3 φBdomS
10 efgredlem.4 φSA=SB
11 efgredlem.5 φ¬A0=B0
12 1 2 3 4 5 6 efgsval BdomSSB=BB1
13 9 12 syl φSB=BB1
14 1 2 3 4 5 6 efgsval AdomSSA=AA1
15 8 14 syl φSA=AA1
16 10 15 eqtr3d φSB=AA1
17 13 16 eqtr3d φBB1=AA1
18 oveq1 A=1A1=11
19 1m1e0 11=0
20 18 19 eqtrdi A=1A1=0
21 20 fveq2d A=1AA1=A0
22 17 21 sylan9eq φA=1BB1=A0
23 10 eleq1d φSADSBD
24 1 2 3 4 5 6 efgs1b AdomSSADA=1
25 8 24 syl φSADA=1
26 1 2 3 4 5 6 efgs1b BdomSSBDB=1
27 9 26 syl φSBDB=1
28 23 25 27 3bitr3d φA=1B=1
29 28 biimpa φA=1B=1
30 oveq1 B=1B1=11
31 30 19 eqtrdi B=1B1=0
32 31 fveq2d B=1BB1=B0
33 29 32 syl φA=1BB1=B0
34 22 33 eqtr3d φA=1A0=B0
35 11 34 mtand φ¬A=1
36 1 2 3 4 5 6 efgsdm AdomSAWordWA0Du1..^AAuranTAu1
37 36 simp1bi AdomSAWordW
38 eldifsn AWordWAWordWA
39 lennncl AWordWAA
40 38 39 sylbi AWordWA
41 8 37 40 3syl φA
42 elnn1uz2 AA=1A2
43 41 42 sylib φA=1A2
44 43 ord φ¬A=1A2
45 35 44 mpd φA2
46 uz2m1nn A2A1
47 45 46 syl φA1
48 35 28 mtbid φ¬B=1
49 1 2 3 4 5 6 efgsdm BdomSBWordWB0Du1..^BBuranTBu1
50 49 simp1bi BdomSBWordW
51 eldifsn BWordWBWordWB
52 lennncl BWordWBB
53 51 52 sylbi BWordWB
54 9 50 53 3syl φB
55 elnn1uz2 BB=1B2
56 54 55 sylib φB=1B2
57 56 ord φ¬B=1B2
58 48 57 mpd φB2
59 uz2m1nn B2B1
60 58 59 syl φB1
61 47 60 jca φA1B1