Metamath Proof Explorer


Theorem efgtlen

Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
Assertion efgtlen XWAranTXA=X+2

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 1 2 3 4 efgtf XWTX=a0X,bI×2𝑜Xspliceaa⟨“bMb”⟩TX:0X×I×2𝑜W
6 5 simpld XWTX=a0X,bI×2𝑜Xspliceaa⟨“bMb”⟩
7 6 rneqd XWranTX=rana0X,bI×2𝑜Xspliceaa⟨“bMb”⟩
8 7 eleq2d XWAranTXArana0X,bI×2𝑜Xspliceaa⟨“bMb”⟩
9 eqid a0X,bI×2𝑜Xspliceaa⟨“bMb”⟩=a0X,bI×2𝑜Xspliceaa⟨“bMb”⟩
10 ovex Xspliceaa⟨“bMb”⟩V
11 9 10 elrnmpo Arana0X,bI×2𝑜Xspliceaa⟨“bMb”⟩a0XbI×2𝑜A=Xspliceaa⟨“bMb”⟩
12 8 11 bitrdi XWAranTXa0XbI×2𝑜A=Xspliceaa⟨“bMb”⟩
13 fviss IWordI×2𝑜WordI×2𝑜
14 1 13 eqsstri WWordI×2𝑜
15 simpl XWa0XbI×2𝑜XW
16 14 15 sselid XWa0XbI×2𝑜XWordI×2𝑜
17 elfzuz a0Xa0
18 17 ad2antrl XWa0XbI×2𝑜a0
19 eluzfz2b a0a0a
20 18 19 sylib XWa0XbI×2𝑜a0a
21 simprl XWa0XbI×2𝑜a0X
22 simprr XWa0XbI×2𝑜bI×2𝑜
23 3 efgmf M:I×2𝑜I×2𝑜
24 23 ffvelcdmi bI×2𝑜MbI×2𝑜
25 22 24 syl XWa0XbI×2𝑜MbI×2𝑜
26 22 25 s2cld XWa0XbI×2𝑜⟨“bMb”⟩WordI×2𝑜
27 16 20 21 26 spllen XWa0XbI×2𝑜Xspliceaa⟨“bMb”⟩=X+⟨“bMb”⟩-aa
28 s2len ⟨“bMb”⟩=2
29 28 a1i XWa0XbI×2𝑜⟨“bMb”⟩=2
30 eluzelcn a0a
31 18 30 syl XWa0XbI×2𝑜a
32 31 subidd XWa0XbI×2𝑜aa=0
33 29 32 oveq12d XWa0XbI×2𝑜⟨“bMb”⟩aa=20
34 2cn 2
35 34 subid1i 20=2
36 33 35 eqtrdi XWa0XbI×2𝑜⟨“bMb”⟩aa=2
37 36 oveq2d XWa0XbI×2𝑜X+⟨“bMb”⟩-aa=X+2
38 27 37 eqtrd XWa0XbI×2𝑜Xspliceaa⟨“bMb”⟩=X+2
39 fveqeq2 A=Xspliceaa⟨“bMb”⟩A=X+2Xspliceaa⟨“bMb”⟩=X+2
40 38 39 syl5ibrcom XWa0XbI×2𝑜A=Xspliceaa⟨“bMb”⟩A=X+2
41 40 rexlimdvva XWa0XbI×2𝑜A=Xspliceaa⟨“bMb”⟩A=X+2
42 12 41 sylbid XWAranTXA=X+2
43 42 imp XWAranTXA=X+2