Metamath Proof Explorer


Theorem efgtlen

Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
Assertion efgtlen X W A ran T X A = X + 2

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 1 2 3 4 efgtf X W T X = a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ T X : 0 X × I × 2 𝑜 W
6 5 simpld X W T X = a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩
7 6 rneqd X W ran T X = ran a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩
8 7 eleq2d X W A ran T X A ran a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩
9 eqid a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ = a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩
10 ovex X splice a a ⟨“ b M b ”⟩ V
11 9 10 elrnmpo A ran a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ a 0 X b I × 2 𝑜 A = X splice a a ⟨“ b M b ”⟩
12 8 11 syl6bb X W A ran T X a 0 X b I × 2 𝑜 A = X splice a a ⟨“ b M b ”⟩
13 fviss I Word I × 2 𝑜 Word I × 2 𝑜
14 1 13 eqsstri W Word I × 2 𝑜
15 simpl X W a 0 X b I × 2 𝑜 X W
16 14 15 sseldi X W a 0 X b I × 2 𝑜 X Word I × 2 𝑜
17 elfzuz a 0 X a 0
18 17 ad2antrl X W a 0 X b I × 2 𝑜 a 0
19 eluzfz2b a 0 a 0 a
20 18 19 sylib X W a 0 X b I × 2 𝑜 a 0 a
21 simprl X W a 0 X b I × 2 𝑜 a 0 X
22 simprr X W a 0 X b I × 2 𝑜 b I × 2 𝑜
23 3 efgmf M : I × 2 𝑜 I × 2 𝑜
24 23 ffvelrni b I × 2 𝑜 M b I × 2 𝑜
25 22 24 syl X W a 0 X b I × 2 𝑜 M b I × 2 𝑜
26 22 25 s2cld X W a 0 X b I × 2 𝑜 ⟨“ b M b ”⟩ Word I × 2 𝑜
27 16 20 21 26 spllen X W a 0 X b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ = X + ⟨“ b M b ”⟩ - a a
28 s2len ⟨“ b M b ”⟩ = 2
29 28 a1i X W a 0 X b I × 2 𝑜 ⟨“ b M b ”⟩ = 2
30 eluzelcn a 0 a
31 18 30 syl X W a 0 X b I × 2 𝑜 a
32 31 subidd X W a 0 X b I × 2 𝑜 a a = 0
33 29 32 oveq12d X W a 0 X b I × 2 𝑜 ⟨“ b M b ”⟩ a a = 2 0
34 2cn 2
35 34 subid1i 2 0 = 2
36 33 35 syl6eq X W a 0 X b I × 2 𝑜 ⟨“ b M b ”⟩ a a = 2
37 36 oveq2d X W a 0 X b I × 2 𝑜 X + ⟨“ b M b ”⟩ - a a = X + 2
38 27 37 eqtrd X W a 0 X b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ = X + 2
39 fveqeq2 A = X splice a a ⟨“ b M b ”⟩ A = X + 2 X splice a a ⟨“ b M b ”⟩ = X + 2
40 38 39 syl5ibrcom X W a 0 X b I × 2 𝑜 A = X splice a a ⟨“ b M b ”⟩ A = X + 2
41 40 rexlimdvva X W a 0 X b I × 2 𝑜 A = X splice a a ⟨“ b M b ”⟩ A = X + 2
42 12 41 sylbid X W A ran T X A = X + 2
43 42 imp X W A ran T X A = X + 2