Metamath Proof Explorer


Theorem elcarsg

Description: Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses carsgval.1 φOV
carsgval.2 φM:𝒫O0+∞
Assertion elcarsg φAtoCaraSigaMAOe𝒫OMeA+𝑒MeA=Me

Proof

Step Hyp Ref Expression
1 carsgval.1 φOV
2 carsgval.2 φM:𝒫O0+∞
3 1 2 carsgval φtoCaraSigaM=a𝒫O|e𝒫OMea+𝑒Mea=Me
4 3 eleq2d φAtoCaraSigaMAa𝒫O|e𝒫OMea+𝑒Mea=Me
5 ineq2 a=Aea=eA
6 5 fveq2d a=AMea=MeA
7 difeq2 a=Aea=eA
8 7 fveq2d a=AMea=MeA
9 6 8 oveq12d a=AMea+𝑒Mea=MeA+𝑒MeA
10 9 eqeq1d a=AMea+𝑒Mea=MeMeA+𝑒MeA=Me
11 10 ralbidv a=Ae𝒫OMea+𝑒Mea=Mee𝒫OMeA+𝑒MeA=Me
12 11 elrab Aa𝒫O|e𝒫OMea+𝑒Mea=MeA𝒫Oe𝒫OMeA+𝑒MeA=Me
13 elex A𝒫OAV
14 13 a1i φA𝒫OAV
15 1 adantr φAOOV
16 simpr φAOAO
17 15 16 ssexd φAOAV
18 17 ex φAOAV
19 elpwg AVA𝒫OAO
20 19 a1i φAVA𝒫OAO
21 14 18 20 pm5.21ndd φA𝒫OAO
22 21 anbi1d φA𝒫Oe𝒫OMeA+𝑒MeA=MeAOe𝒫OMeA+𝑒MeA=Me
23 12 22 bitrid φAa𝒫O|e𝒫OMea+𝑒Mea=MeAOe𝒫OMeA+𝑒MeA=Me
24 4 23 bitrd φAtoCaraSigaMAOe𝒫OMeA+𝑒MeA=Me