Metamath Proof Explorer


Theorem elcncf

Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 11-Oct-2007) (Revised by Mario Carneiro, 9-Nov-2013)

Ref Expression
Assertion elcncf ABF:AcnBF:ABxAy+z+wAxw<zFxFw<y

Proof

Step Hyp Ref Expression
1 cncfval ABAcnB=fBA|xAy+z+wAxw<zfxfw<y
2 1 eleq2d ABF:AcnBFfBA|xAy+z+wAxw<zfxfw<y
3 fveq1 f=Ffx=Fx
4 fveq1 f=Ffw=Fw
5 3 4 oveq12d f=Ffxfw=FxFw
6 5 fveq2d f=Ffxfw=FxFw
7 6 breq1d f=Ffxfw<yFxFw<y
8 7 imbi2d f=Fxw<zfxfw<yxw<zFxFw<y
9 8 rexralbidv f=Fz+wAxw<zfxfw<yz+wAxw<zFxFw<y
10 9 2ralbidv f=FxAy+z+wAxw<zfxfw<yxAy+z+wAxw<zFxFw<y
11 10 elrab FfBA|xAy+z+wAxw<zfxfw<yFBAxAy+z+wAxw<zFxFw<y
12 2 11 bitrdi ABF:AcnBFBAxAy+z+wAxw<zFxFw<y
13 cnex V
14 13 ssex BBV
15 13 ssex AAV
16 elmapg BVAVFBAF:AB
17 14 15 16 syl2anr ABFBAF:AB
18 17 anbi1d ABFBAxAy+z+wAxw<zFxFw<yF:ABxAy+z+wAxw<zFxFw<y
19 12 18 bitrd ABF:AcnBF:ABxAy+z+wAxw<zFxFw<y