Metamath Proof Explorer


Theorem elcpn

Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion elcpn SN0FCnSNF𝑝𝑚SSDnFN:domFcn

Proof

Step Hyp Ref Expression
1 cpnfval SCnS=n0f𝑝𝑚S|SDnfn:domfcn
2 1 fveq1d SCnSN=n0f𝑝𝑚S|SDnfn:domfcnN
3 fveq2 n=NSDnfn=SDnfN
4 3 eleq1d n=NSDnfn:domfcnSDnfN:domfcn
5 4 rabbidv n=Nf𝑝𝑚S|SDnfn:domfcn=f𝑝𝑚S|SDnfN:domfcn
6 eqid n0f𝑝𝑚S|SDnfn:domfcn=n0f𝑝𝑚S|SDnfn:domfcn
7 ovex 𝑝𝑚SV
8 7 rabex f𝑝𝑚S|SDnfN:domfcnV
9 5 6 8 fvmpt N0n0f𝑝𝑚S|SDnfn:domfcnN=f𝑝𝑚S|SDnfN:domfcn
10 2 9 sylan9eq SN0CnSN=f𝑝𝑚S|SDnfN:domfcn
11 10 eleq2d SN0FCnSNFf𝑝𝑚S|SDnfN:domfcn
12 oveq2 f=FSDnf=SDnF
13 12 fveq1d f=FSDnfN=SDnFN
14 dmeq f=Fdomf=domF
15 14 oveq1d f=Fdomfcn=domFcn
16 13 15 eleq12d f=FSDnfN:domfcnSDnFN:domFcn
17 16 elrab Ff𝑝𝑚S|SDnfN:domfcnF𝑝𝑚SSDnFN:domFcn
18 11 17 bitrdi SN0FCnSNF𝑝𝑚SSDnFN:domFcn