Metamath Proof Explorer


Theorem eleclclwwlkn

Description: A member of an equivalence class according to .~ . (Contributed by Alexander van der Vekens, 11-May-2018) (Revised by AV, 1-May-2021)

Ref Expression
Hypotheses erclwwlkn.w W=NClWWalksNG
erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
Assertion eleclclwwlkn BW/˙XBYBYWn0NY=XcyclShiftn

Proof

Step Hyp Ref Expression
1 erclwwlkn.w W=NClWWalksNG
2 erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
3 1 2 eclclwwlkn1 BW/˙BW/˙xWB=yW|n0Ny=xcyclShiftn
4 eqeq1 y=Yy=xcyclShiftnY=xcyclShiftn
5 4 rexbidv y=Yn0Ny=xcyclShiftnn0NY=xcyclShiftn
6 5 elrab YyW|n0Ny=xcyclShiftnYWn0NY=xcyclShiftn
7 oveq2 n=kxcyclShiftn=xcyclShiftk
8 7 eqeq2d n=kY=xcyclShiftnY=xcyclShiftk
9 8 cbvrexvw n0NY=xcyclShiftnk0NY=xcyclShiftk
10 eqeq1 y=Xy=xcyclShiftnX=xcyclShiftn
11 10 rexbidv y=Xn0Ny=xcyclShiftnn0NX=xcyclShiftn
12 11 elrab XyW|n0Ny=xcyclShiftnXWn0NX=xcyclShiftn
13 oveq2 n=mxcyclShiftn=xcyclShiftm
14 13 eqeq2d n=mX=xcyclShiftnX=xcyclShiftm
15 14 cbvrexvw n0NX=xcyclShiftnm0NX=xcyclShiftm
16 1 eleclclwwlknlem2 m0NX=xcyclShiftmXWxWk0NY=xcyclShiftkn0NY=XcyclShiftn
17 16 ex m0NX=xcyclShiftmXWxWk0NY=xcyclShiftkn0NY=XcyclShiftn
18 17 rexlimiva m0NX=xcyclShiftmXWxWk0NY=xcyclShiftkn0NY=XcyclShiftn
19 15 18 sylbi n0NX=xcyclShiftnXWxWk0NY=xcyclShiftkn0NY=XcyclShiftn
20 19 expd n0NX=xcyclShiftnXWxWk0NY=xcyclShiftkn0NY=XcyclShiftn
21 20 impcom XWn0NX=xcyclShiftnxWk0NY=xcyclShiftkn0NY=XcyclShiftn
22 12 21 sylbi XyW|n0Ny=xcyclShiftnxWk0NY=xcyclShiftkn0NY=XcyclShiftn
23 22 com12 xWXyW|n0Ny=xcyclShiftnk0NY=xcyclShiftkn0NY=XcyclShiftn
24 23 ad2antlr BW/˙xWB=yW|n0Ny=xcyclShiftnXyW|n0Ny=xcyclShiftnk0NY=xcyclShiftkn0NY=XcyclShiftn
25 24 imp BW/˙xWB=yW|n0Ny=xcyclShiftnXyW|n0Ny=xcyclShiftnk0NY=xcyclShiftkn0NY=XcyclShiftn
26 9 25 bitrid BW/˙xWB=yW|n0Ny=xcyclShiftnXyW|n0Ny=xcyclShiftnn0NY=xcyclShiftnn0NY=XcyclShiftn
27 26 anbi2d BW/˙xWB=yW|n0Ny=xcyclShiftnXyW|n0Ny=xcyclShiftnYWn0NY=xcyclShiftnYWn0NY=XcyclShiftn
28 6 27 bitrid BW/˙xWB=yW|n0Ny=xcyclShiftnXyW|n0Ny=xcyclShiftnYyW|n0Ny=xcyclShiftnYWn0NY=XcyclShiftn
29 28 ex BW/˙xWB=yW|n0Ny=xcyclShiftnXyW|n0Ny=xcyclShiftnYyW|n0Ny=xcyclShiftnYWn0NY=XcyclShiftn
30 eleq2 B=yW|n0Ny=xcyclShiftnXBXyW|n0Ny=xcyclShiftn
31 eleq2 B=yW|n0Ny=xcyclShiftnYBYyW|n0Ny=xcyclShiftn
32 31 bibi1d B=yW|n0Ny=xcyclShiftnYBYWn0NY=XcyclShiftnYyW|n0Ny=xcyclShiftnYWn0NY=XcyclShiftn
33 30 32 imbi12d B=yW|n0Ny=xcyclShiftnXBYBYWn0NY=XcyclShiftnXyW|n0Ny=xcyclShiftnYyW|n0Ny=xcyclShiftnYWn0NY=XcyclShiftn
34 33 adantl BW/˙xWB=yW|n0Ny=xcyclShiftnXBYBYWn0NY=XcyclShiftnXyW|n0Ny=xcyclShiftnYyW|n0Ny=xcyclShiftnYWn0NY=XcyclShiftn
35 29 34 mpbird BW/˙xWB=yW|n0Ny=xcyclShiftnXBYBYWn0NY=XcyclShiftn
36 35 rexlimdva2 BW/˙xWB=yW|n0Ny=xcyclShiftnXBYBYWn0NY=XcyclShiftn
37 3 36 sylbid BW/˙BW/˙XBYBYWn0NY=XcyclShiftn
38 37 pm2.43i BW/˙XBYBYWn0NY=XcyclShiftn
39 38 imp BW/˙XBYBYWn0NY=XcyclShiftn