Description: A member of an equivalence class according to .~ . (Contributed by Alexander van der Vekens, 11-May-2018) (Revised by AV, 1-May-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erclwwlkn.w | |
|
erclwwlkn.r | |
||
Assertion | eleclclwwlkn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlkn.w | |
|
2 | erclwwlkn.r | |
|
3 | 1 2 | eclclwwlkn1 | |
4 | eqeq1 | |
|
5 | 4 | rexbidv | |
6 | 5 | elrab | |
7 | oveq2 | |
|
8 | 7 | eqeq2d | |
9 | 8 | cbvrexvw | |
10 | eqeq1 | |
|
11 | 10 | rexbidv | |
12 | 11 | elrab | |
13 | oveq2 | |
|
14 | 13 | eqeq2d | |
15 | 14 | cbvrexvw | |
16 | 1 | eleclclwwlknlem2 | |
17 | 16 | ex | |
18 | 17 | rexlimiva | |
19 | 15 18 | sylbi | |
20 | 19 | expd | |
21 | 20 | impcom | |
22 | 12 21 | sylbi | |
23 | 22 | com12 | |
24 | 23 | ad2antlr | |
25 | 24 | imp | |
26 | 9 25 | bitrid | |
27 | 26 | anbi2d | |
28 | 6 27 | bitrid | |
29 | 28 | ex | |
30 | eleq2 | |
|
31 | eleq2 | |
|
32 | 31 | bibi1d | |
33 | 30 32 | imbi12d | |
34 | 33 | adantl | |
35 | 29 34 | mpbird | |
36 | 35 | rexlimdva2 | |
37 | 3 36 | sylbid | |
38 | 37 | pm2.43i | |
39 | 38 | imp | |