Metamath Proof Explorer


Theorem elhf2

Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015)

Ref Expression
Hypothesis elhf2.1 A V
Assertion elhf2 A Hf rank A ω

Proof

Step Hyp Ref Expression
1 elhf2.1 A V
2 elhf A Hf x ω A R1 x
3 omon ω On ω = On
4 nnon x ω x On
5 1 rankr1a x On A R1 x rank A x
6 4 5 syl x ω A R1 x rank A x
7 6 adantl ω On x ω A R1 x rank A x
8 elnn rank A x x ω rank A ω
9 8 expcom x ω rank A x rank A ω
10 9 adantl ω On x ω rank A x rank A ω
11 7 10 sylbid ω On x ω A R1 x rank A ω
12 11 rexlimdva ω On x ω A R1 x rank A ω
13 peano2 rank A ω suc rank A ω
14 13 adantr rank A ω ω On suc rank A ω
15 r1rankid A V A R1 rank A
16 1 15 mp1i rank A ω ω On A R1 rank A
17 1 elpw A 𝒫 R1 rank A A R1 rank A
18 16 17 sylibr rank A ω ω On A 𝒫 R1 rank A
19 nnon rank A ω rank A On
20 r1suc rank A On R1 suc rank A = 𝒫 R1 rank A
21 19 20 syl rank A ω R1 suc rank A = 𝒫 R1 rank A
22 21 adantr rank A ω ω On R1 suc rank A = 𝒫 R1 rank A
23 18 22 eleqtrrd rank A ω ω On A R1 suc rank A
24 fveq2 x = suc rank A R1 x = R1 suc rank A
25 24 eleq2d x = suc rank A A R1 x A R1 suc rank A
26 25 rspcev suc rank A ω A R1 suc rank A x ω A R1 x
27 14 23 26 syl2anc rank A ω ω On x ω A R1 x
28 27 expcom ω On rank A ω x ω A R1 x
29 12 28 impbid ω On x ω A R1 x rank A ω
30 1 tz9.13 x On A R1 x
31 rankon rank A On
32 30 31 2th x On A R1 x rank A On
33 rexeq ω = On x ω A R1 x x On A R1 x
34 eleq2 ω = On rank A ω rank A On
35 33 34 bibi12d ω = On x ω A R1 x rank A ω x On A R1 x rank A On
36 32 35 mpbiri ω = On x ω A R1 x rank A ω
37 29 36 jaoi ω On ω = On x ω A R1 x rank A ω
38 3 37 ax-mp x ω A R1 x rank A ω
39 2 38 bitri A Hf rank A ω