Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elhf2.1 | |
|
Assertion | elhf2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elhf2.1 | |
|
2 | elhf | |
|
3 | omon | |
|
4 | nnon | |
|
5 | 1 | rankr1a | |
6 | 4 5 | syl | |
7 | 6 | adantl | |
8 | elnn | |
|
9 | 8 | expcom | |
10 | 9 | adantl | |
11 | 7 10 | sylbid | |
12 | 11 | rexlimdva | |
13 | peano2 | |
|
14 | 13 | adantr | |
15 | r1rankid | |
|
16 | 1 15 | mp1i | |
17 | 1 | elpw | |
18 | 16 17 | sylibr | |
19 | nnon | |
|
20 | r1suc | |
|
21 | 19 20 | syl | |
22 | 21 | adantr | |
23 | 18 22 | eleqtrrd | |
24 | fveq2 | |
|
25 | 24 | eleq2d | |
26 | 25 | rspcev | |
27 | 14 23 26 | syl2anc | |
28 | 27 | expcom | |
29 | 12 28 | impbid | |
30 | 1 | tz9.13 | |
31 | rankon | |
|
32 | 30 31 | 2th | |
33 | rexeq | |
|
34 | eleq2 | |
|
35 | 33 34 | bibi12d | |
36 | 32 35 | mpbiri | |
37 | 29 36 | jaoi | |
38 | 3 37 | ax-mp | |
39 | 2 38 | bitri | |