Metamath Proof Explorer


Theorem elhf2

Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015)

Ref Expression
Hypothesis elhf2.1 AV
Assertion elhf2 AHfrankAω

Proof

Step Hyp Ref Expression
1 elhf2.1 AV
2 elhf AHfxωAR1x
3 omon ωOnω=On
4 nnon xωxOn
5 1 rankr1a xOnAR1xrankAx
6 4 5 syl xωAR1xrankAx
7 6 adantl ωOnxωAR1xrankAx
8 elnn rankAxxωrankAω
9 8 expcom xωrankAxrankAω
10 9 adantl ωOnxωrankAxrankAω
11 7 10 sylbid ωOnxωAR1xrankAω
12 11 rexlimdva ωOnxωAR1xrankAω
13 peano2 rankAωsucrankAω
14 13 adantr rankAωωOnsucrankAω
15 r1rankid AVAR1rankA
16 1 15 mp1i rankAωωOnAR1rankA
17 1 elpw A𝒫R1rankAAR1rankA
18 16 17 sylibr rankAωωOnA𝒫R1rankA
19 nnon rankAωrankAOn
20 r1suc rankAOnR1sucrankA=𝒫R1rankA
21 19 20 syl rankAωR1sucrankA=𝒫R1rankA
22 21 adantr rankAωωOnR1sucrankA=𝒫R1rankA
23 18 22 eleqtrrd rankAωωOnAR1sucrankA
24 fveq2 x=sucrankAR1x=R1sucrankA
25 24 eleq2d x=sucrankAAR1xAR1sucrankA
26 25 rspcev sucrankAωAR1sucrankAxωAR1x
27 14 23 26 syl2anc rankAωωOnxωAR1x
28 27 expcom ωOnrankAωxωAR1x
29 12 28 impbid ωOnxωAR1xrankAω
30 1 tz9.13 xOnAR1x
31 rankon rankAOn
32 30 31 2th xOnAR1xrankAOn
33 rexeq ω=OnxωAR1xxOnAR1x
34 eleq2 ω=OnrankAωrankAOn
35 33 34 bibi12d ω=OnxωAR1xrankAωxOnAR1xrankAOn
36 32 35 mpbiri ω=OnxωAR1xrankAω
37 29 36 jaoi ωOnω=OnxωAR1xrankAω
38 3 37 ax-mp xωAR1xrankAω
39 2 38 bitri AHfrankAω