Metamath Proof Explorer


Theorem elons2

Description: A surreal is ordinal iff it is the cut of some set of surreals and the empty set. Definition from Conway p. 27. (Contributed by Scott Fenton, 19-Mar-2025)

Ref Expression
Assertion elons2 Could not format assertion : No typesetting found for |- ( A e. On_s <-> E. a e. ~P No A = ( a |s (/) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 leftssno Could not format ( _Left ` A ) C_ No : No typesetting found for |- ( _Left ` A ) C_ No with typecode |-
2 fvex Could not format ( _Left ` A ) e. _V : No typesetting found for |- ( _Left ` A ) e. _V with typecode |-
3 2 elpw Could not format ( ( _Left ` A ) e. ~P No <-> ( _Left ` A ) C_ No ) : No typesetting found for |- ( ( _Left ` A ) e. ~P No <-> ( _Left ` A ) C_ No ) with typecode |-
4 1 3 mpbir Could not format ( _Left ` A ) e. ~P No : No typesetting found for |- ( _Left ` A ) e. ~P No with typecode |-
5 onsno Could not format ( A e. On_s -> A e. No ) : No typesetting found for |- ( A e. On_s -> A e. No ) with typecode |-
6 lrcut Could not format ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) : No typesetting found for |- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) with typecode |-
7 5 6 syl Could not format ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) : No typesetting found for |- ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) with typecode |-
8 elons Could not format ( A e. On_s <-> ( A e. No /\ ( _Right ` A ) = (/) ) ) : No typesetting found for |- ( A e. On_s <-> ( A e. No /\ ( _Right ` A ) = (/) ) ) with typecode |-
9 8 simprbi Could not format ( A e. On_s -> ( _Right ` A ) = (/) ) : No typesetting found for |- ( A e. On_s -> ( _Right ` A ) = (/) ) with typecode |-
10 9 oveq2d Could not format ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = ( ( _Left ` A ) |s (/) ) ) : No typesetting found for |- ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = ( ( _Left ` A ) |s (/) ) ) with typecode |-
11 7 10 eqtr3d Could not format ( A e. On_s -> A = ( ( _Left ` A ) |s (/) ) ) : No typesetting found for |- ( A e. On_s -> A = ( ( _Left ` A ) |s (/) ) ) with typecode |-
12 oveq1 Could not format ( a = ( _Left ` A ) -> ( a |s (/) ) = ( ( _Left ` A ) |s (/) ) ) : No typesetting found for |- ( a = ( _Left ` A ) -> ( a |s (/) ) = ( ( _Left ` A ) |s (/) ) ) with typecode |-
13 12 rspceeqv Could not format ( ( ( _Left ` A ) e. ~P No /\ A = ( ( _Left ` A ) |s (/) ) ) -> E. a e. ~P No A = ( a |s (/) ) ) : No typesetting found for |- ( ( ( _Left ` A ) e. ~P No /\ A = ( ( _Left ` A ) |s (/) ) ) -> E. a e. ~P No A = ( a |s (/) ) ) with typecode |-
14 4 11 13 sylancr Could not format ( A e. On_s -> E. a e. ~P No A = ( a |s (/) ) ) : No typesetting found for |- ( A e. On_s -> E. a e. ~P No A = ( a |s (/) ) ) with typecode |-
15 nulssgt a𝒫Noas
16 15 scutcld a𝒫Noa|sNo
17 eqidd a𝒫Noa|s=a|s
18 15 17 cofcutr2d Could not format ( a e. ~P No -> A. x e. ( _Right ` ( a |s (/) ) ) E. y e. (/) y <_s x ) : No typesetting found for |- ( a e. ~P No -> A. x e. ( _Right ` ( a |s (/) ) ) E. y e. (/) y <_s x ) with typecode |-
19 rex0 ¬yysx
20 jcn Could not format ( x e. ( _Right ` ( a |s (/) ) ) -> ( -. E. y e. (/) y <_s x -> -. ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) ) ) : No typesetting found for |- ( x e. ( _Right ` ( a |s (/) ) ) -> ( -. E. y e. (/) y <_s x -> -. ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) ) ) with typecode |-
21 19 20 mpi Could not format ( x e. ( _Right ` ( a |s (/) ) ) -> -. ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) ) : No typesetting found for |- ( x e. ( _Right ` ( a |s (/) ) ) -> -. ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) ) with typecode |-
22 21 con2i Could not format ( ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) -> -. x e. ( _Right ` ( a |s (/) ) ) ) : No typesetting found for |- ( ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) -> -. x e. ( _Right ` ( a |s (/) ) ) ) with typecode |-
23 22 alimi Could not format ( A. x ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) -> A. x -. x e. ( _Right ` ( a |s (/) ) ) ) : No typesetting found for |- ( A. x ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) -> A. x -. x e. ( _Right ` ( a |s (/) ) ) ) with typecode |-
24 df-ral Could not format ( A. x e. ( _Right ` ( a |s (/) ) ) E. y e. (/) y <_s x <-> A. x ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) ) : No typesetting found for |- ( A. x e. ( _Right ` ( a |s (/) ) ) E. y e. (/) y <_s x <-> A. x ( x e. ( _Right ` ( a |s (/) ) ) -> E. y e. (/) y <_s x ) ) with typecode |-
25 eq0 Could not format ( ( _Right ` ( a |s (/) ) ) = (/) <-> A. x -. x e. ( _Right ` ( a |s (/) ) ) ) : No typesetting found for |- ( ( _Right ` ( a |s (/) ) ) = (/) <-> A. x -. x e. ( _Right ` ( a |s (/) ) ) ) with typecode |-
26 23 24 25 3imtr4i Could not format ( A. x e. ( _Right ` ( a |s (/) ) ) E. y e. (/) y <_s x -> ( _Right ` ( a |s (/) ) ) = (/) ) : No typesetting found for |- ( A. x e. ( _Right ` ( a |s (/) ) ) E. y e. (/) y <_s x -> ( _Right ` ( a |s (/) ) ) = (/) ) with typecode |-
27 18 26 syl Could not format ( a e. ~P No -> ( _Right ` ( a |s (/) ) ) = (/) ) : No typesetting found for |- ( a e. ~P No -> ( _Right ` ( a |s (/) ) ) = (/) ) with typecode |-
28 elons Could not format ( ( a |s (/) ) e. On_s <-> ( ( a |s (/) ) e. No /\ ( _Right ` ( a |s (/) ) ) = (/) ) ) : No typesetting found for |- ( ( a |s (/) ) e. On_s <-> ( ( a |s (/) ) e. No /\ ( _Right ` ( a |s (/) ) ) = (/) ) ) with typecode |-
29 16 27 28 sylanbrc Could not format ( a e. ~P No -> ( a |s (/) ) e. On_s ) : No typesetting found for |- ( a e. ~P No -> ( a |s (/) ) e. On_s ) with typecode |-
30 eleq1 Could not format ( A = ( a |s (/) ) -> ( A e. On_s <-> ( a |s (/) ) e. On_s ) ) : No typesetting found for |- ( A = ( a |s (/) ) -> ( A e. On_s <-> ( a |s (/) ) e. On_s ) ) with typecode |-
31 29 30 syl5ibrcom Could not format ( a e. ~P No -> ( A = ( a |s (/) ) -> A e. On_s ) ) : No typesetting found for |- ( a e. ~P No -> ( A = ( a |s (/) ) -> A e. On_s ) ) with typecode |-
32 31 rexlimiv Could not format ( E. a e. ~P No A = ( a |s (/) ) -> A e. On_s ) : No typesetting found for |- ( E. a e. ~P No A = ( a |s (/) ) -> A e. On_s ) with typecode |-
33 14 32 impbii Could not format ( A e. On_s <-> E. a e. ~P No A = ( a |s (/) ) ) : No typesetting found for |- ( A e. On_s <-> E. a e. ~P No A = ( a |s (/) ) ) with typecode |-