Metamath Proof Explorer


Theorem elons2

Description: A surreal is ordinal iff it is the cut of some set of surreals and the empty set. Definition from Conway p. 27. (Contributed by Scott Fenton, 19-Mar-2025)

Ref Expression
Assertion elons2 A On s a 𝒫 No A = a | s

Proof

Step Hyp Ref Expression
1 leftssno L A No
2 fvex L A V
3 2 elpw L A 𝒫 No L A No
4 1 3 mpbir L A 𝒫 No
5 onsno A On s A No
6 lrcut A No L A | s R A = A
7 5 6 syl A On s L A | s R A = A
8 elons A On s A No R A =
9 8 simprbi A On s R A =
10 9 oveq2d A On s L A | s R A = L A | s
11 7 10 eqtr3d A On s A = L A | s
12 oveq1 a = L A a | s = L A | s
13 12 rspceeqv L A 𝒫 No A = L A | s a 𝒫 No A = a | s
14 4 11 13 sylancr A On s a 𝒫 No A = a | s
15 nulssgt a 𝒫 No a s
16 15 scutcld a 𝒫 No a | s No
17 eqidd a 𝒫 No a | s = a | s
18 15 17 cofcutr2d a 𝒫 No x R a | s y y s x
19 rex0 ¬ y y s x
20 jcn x R a | s ¬ y y s x ¬ x R a | s y y s x
21 19 20 mpi x R a | s ¬ x R a | s y y s x
22 21 con2i x R a | s y y s x ¬ x R a | s
23 22 alimi x x R a | s y y s x x ¬ x R a | s
24 df-ral x R a | s y y s x x x R a | s y y s x
25 eq0 R a | s = x ¬ x R a | s
26 23 24 25 3imtr4i x R a | s y y s x R a | s =
27 18 26 syl a 𝒫 No R a | s =
28 elons a | s On s a | s No R a | s =
29 16 27 28 sylanbrc a 𝒫 No a | s On s
30 eleq1 A = a | s A On s a | s On s
31 29 30 syl5ibrcom a 𝒫 No A = a | s A On s
32 31 rexlimiv a 𝒫 No A = a | s A On s
33 14 32 impbii A On s a 𝒫 No A = a | s