Metamath Proof Explorer


Theorem elptr2

Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
elptr2.1 φAV
elptr2.2 φWFin
elptr2.3 φkASFk
elptr2.4 φkAWS=Fk
Assertion elptr2 φkASB

Proof

Step Hyp Ref Expression
1 ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
2 elptr2.1 φAV
3 elptr2.2 φWFin
4 elptr2.3 φkASFk
5 elptr2.4 φkAWS=Fk
6 nffvmpt1 _kkASy
7 nfcv _ykASk
8 fveq2 y=kkASy=kASk
9 6 7 8 cbvixp yAkASy=kAkASk
10 simpr φkAkA
11 eqid kAS=kAS
12 11 fvmpt2 kASFkkASk=S
13 10 4 12 syl2anc φkAkASk=S
14 13 ixpeq2dva φkAkASk=kAS
15 9 14 eqtrid φyAkASy=kAS
16 4 ralrimiva φkASFk
17 11 fnmpt kASFkkASFnA
18 16 17 syl φkASFnA
19 13 4 eqeltrd φkAkASkFk
20 19 ralrimiva φkAkASkFk
21 6 nfel1 kkASyFy
22 nfv ykASkFk
23 fveq2 y=kFy=Fk
24 8 23 eleq12d y=kkASyFykASkFk
25 21 22 24 cbvralw yAkASyFykAkASkFk
26 20 25 sylibr φyAkASyFy
27 eldifi kAWkA
28 27 13 sylan2 φkAWkASk=S
29 28 5 eqtrd φkAWkASk=Fk
30 29 ralrimiva φkAWkASk=Fk
31 6 nfeq1 kkASy=Fy
32 nfv ykASk=Fk
33 23 unieqd y=kFy=Fk
34 8 33 eqeq12d y=kkASy=FykASk=Fk
35 31 32 34 cbvralw yAWkASy=FykAWkASk=Fk
36 30 35 sylibr φyAWkASy=Fy
37 1 elptr AVkASFnAyAkASyFyWFinyAWkASy=FyyAkASyB
38 2 18 26 3 36 37 syl122anc φyAkASyB
39 15 38 eqeltrrd φkASB