Metamath Proof Explorer


Theorem elsetrecslem

Description: Lemma for elsetrecs . Any element of setrecs ( F ) is generated by some subset of setrecs ( F ) . This is much weaker than setrec2v . To see why this lemma also requires setrec1 , consider what would happen if we replaced B with { A } . The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021) (New usage is discouraged.)

Ref Expression
Hypothesis elsetrecs.1 B=setrecsF
Assertion elsetrecslem ABxxBAFx

Proof

Step Hyp Ref Expression
1 elsetrecs.1 B=setrecsF
2 ssdifsn BBABB¬AB
3 2 simprbi BBA¬AB
4 3 con2i AB¬BBA
5 sseq1 x=axBaB
6 fveq2 x=aFx=Fa
7 6 eleq2d x=aAFxAFa
8 5 7 anbi12d x=axBAFxaBAFa
9 8 notbid x=a¬xBAFx¬aBAFa
10 9 spvv x¬xBAFx¬aBAFa
11 imnan aB¬AFa¬aBAFa
12 idd aB¬AFa¬AFa
13 vex aV
14 13 a1i aBaV
15 id aBaB
16 1 14 15 setrec1 aBFaB
17 12 16 jctild aB¬AFaFaB¬AFa
18 17 a2i aB¬AFaaBFaB¬AFa
19 11 18 sylbir ¬aBAFaaBFaB¬AFa
20 19 adantrd ¬aBAFaaB¬AaFaB¬AFa
21 ssdifsn aBAaB¬Aa
22 ssdifsn FaBAFaB¬AFa
23 20 21 22 3imtr4g ¬aBAFaaBAFaBA
24 10 23 syl x¬xBAFxaBAFaBA
25 24 alrimiv x¬xBAFxaaBAFaBA
26 1 25 setrec2v x¬xBAFxBBA
27 4 26 nsyl AB¬x¬xBAFx
28 df-ex xxBAFx¬x¬xBAFx
29 27 28 sylibr ABxxBAFx