Description: An unordered pair is an element of all unordered pairs. At least one of the two elements of the unordered pair must be a set. Otherwise, the unordered pair would be the empty set, see prprc , which is not an element of all unordered pairs, see spr0nelg . (Contributed by AV, 21-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elsprel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | elex | |
|
3 | 1 2 | orim12i | |
4 | elisset | |
|
5 | elisset | |
|
6 | exdistrv | |
|
7 | preq12 | |
|
8 | 7 | eqcomd | |
9 | 8 | 2eximi | |
10 | 6 9 | sylbir | |
11 | 4 5 10 | syl2an | |
12 | 11 | expcom | |
13 | preq2 | |
|
14 | 13 | adantr | |
15 | dfsn2 | |
|
16 | sneq | |
|
17 | 16 | adantl | |
18 | 15 17 | eqtr3id | |
19 | 14 18 | eqtr2d | |
20 | 19 | ex | |
21 | 20 | spimevw | |
22 | 21 | adantl | |
23 | prprc2 | |
|
24 | 23 | adantr | |
25 | 24 | eqeq1d | |
26 | 25 | exbidv | |
27 | 22 26 | mpbird | |
28 | 27 | ex | |
29 | 28 | eximdv | |
30 | 4 29 | syl5 | |
31 | 12 30 | pm2.61i | |
32 | 11 | ex | |
33 | preq1 | |
|
34 | 33 | adantr | |
35 | dfsn2 | |
|
36 | sneq | |
|
37 | 36 | adantl | |
38 | 35 37 | eqtr3id | |
39 | 34 38 | eqtr2d | |
40 | 39 | ex | |
41 | 40 | spimevw | |
42 | 41 | adantl | |
43 | prprc1 | |
|
44 | 43 | adantr | |
45 | 44 | eqeq1d | |
46 | 45 | exbidv | |
47 | 42 46 | mpbird | |
48 | 47 | ex | |
49 | 48 | eximdv | |
50 | 49 | impcom | |
51 | excom | |
|
52 | 50 51 | sylibr | |
53 | 52 | ex | |
54 | 53 5 | syl11 | |
55 | 32 54 | pm2.61i | |
56 | 31 55 | jaoi | |
57 | 3 56 | syl | |
58 | prex | |
|
59 | eqeq1 | |
|
60 | 59 | 2exbidv | |
61 | 58 60 | elab | |
62 | 57 61 | sylibr | |