Metamath Proof Explorer


Theorem elsprel

Description: An unordered pair is an element of all unordered pairs. At least one of the two elements of the unordered pair must be a set. Otherwise, the unordered pair would be the empty set, see prprc , which is not an element of all unordered pairs, see spr0nelg . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion elsprel AVBWABp|abp=ab

Proof

Step Hyp Ref Expression
1 elex AVAV
2 elex BWBV
3 1 2 orim12i AVBWAVBV
4 elisset AVaa=A
5 elisset BVbb=B
6 exdistrv aba=Ab=Baa=Abb=B
7 preq12 a=Ab=Bab=AB
8 7 eqcomd a=Ab=BAB=ab
9 8 2eximi aba=Ab=BabAB=ab
10 6 9 sylbir aa=Abb=BabAB=ab
11 4 5 10 syl2an AVBVabAB=ab
12 11 expcom BVAVabAB=ab
13 preq2 b=aab=aa
14 13 adantr b=aa=Aab=aa
15 dfsn2 a=aa
16 sneq a=Aa=A
17 16 adantl b=aa=Aa=A
18 15 17 eqtr3id b=aa=Aaa=A
19 14 18 eqtr2d b=aa=AA=ab
20 19 ex b=aa=AA=ab
21 20 spimevw a=AbA=ab
22 21 adantl ¬BVa=AbA=ab
23 prprc2 ¬BVAB=A
24 23 adantr ¬BVa=AAB=A
25 24 eqeq1d ¬BVa=AAB=abA=ab
26 25 exbidv ¬BVa=AbAB=abbA=ab
27 22 26 mpbird ¬BVa=AbAB=ab
28 27 ex ¬BVa=AbAB=ab
29 28 eximdv ¬BVaa=AabAB=ab
30 4 29 syl5 ¬BVAVabAB=ab
31 12 30 pm2.61i AVabAB=ab
32 11 ex AVBVabAB=ab
33 preq1 a=bab=bb
34 33 adantr a=bb=Bab=bb
35 dfsn2 b=bb
36 sneq b=Bb=B
37 36 adantl a=bb=Bb=B
38 35 37 eqtr3id a=bb=Bbb=B
39 34 38 eqtr2d a=bb=BB=ab
40 39 ex a=bb=BB=ab
41 40 spimevw b=BaB=ab
42 41 adantl ¬AVb=BaB=ab
43 prprc1 ¬AVAB=B
44 43 adantr ¬AVb=BAB=B
45 44 eqeq1d ¬AVb=BAB=abB=ab
46 45 exbidv ¬AVb=BaAB=abaB=ab
47 42 46 mpbird ¬AVb=BaAB=ab
48 47 ex ¬AVb=BaAB=ab
49 48 eximdv ¬AVbb=BbaAB=ab
50 49 impcom bb=B¬AVbaAB=ab
51 excom abAB=abbaAB=ab
52 50 51 sylibr bb=B¬AVabAB=ab
53 52 ex bb=B¬AVabAB=ab
54 53 5 syl11 ¬AVBVabAB=ab
55 32 54 pm2.61i BVabAB=ab
56 31 55 jaoi AVBVabAB=ab
57 3 56 syl AVBWabAB=ab
58 prex ABV
59 eqeq1 p=ABp=abAB=ab
60 59 2exbidv p=ABabp=ababAB=ab
61 58 60 elab ABp|abp=ababAB=ab
62 57 61 sylibr AVBWABp|abp=ab