Metamath Proof Explorer


Theorem en2eleq

Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion en2eleq XPP2𝑜P=XPX

Proof

Step Hyp Ref Expression
1 2onn 2𝑜ω
2 nnfi 2𝑜ω2𝑜Fin
3 1 2 ax-mp 2𝑜Fin
4 enfi P2𝑜PFin2𝑜Fin
5 3 4 mpbiri P2𝑜PFin
6 5 adantl XPP2𝑜PFin
7 simpl XPP2𝑜XP
8 1onn 1𝑜ω
9 simpr XPP2𝑜P2𝑜
10 df-2o 2𝑜=suc1𝑜
11 9 10 breqtrdi XPP2𝑜Psuc1𝑜
12 dif1ennn 1𝑜ωPsuc1𝑜XPPX1𝑜
13 8 11 7 12 mp3an2i XPP2𝑜PX1𝑜
14 en1uniel PX1𝑜PXPX
15 13 14 syl XPP2𝑜PXPX
16 eldifsn PXPXPXPPXX
17 15 16 sylib XPP2𝑜PXPPXX
18 17 simpld XPP2𝑜PXP
19 7 18 prssd XPP2𝑜XPXP
20 17 simprd XPP2𝑜PXX
21 20 necomd XPP2𝑜XPX
22 enpr2 XPPXPXPXXPX2𝑜
23 7 18 21 22 syl3anc XPP2𝑜XPX2𝑜
24 ensym P2𝑜2𝑜P
25 24 adantl XPP2𝑜2𝑜P
26 entr XPX2𝑜2𝑜PXPXP
27 23 25 26 syl2anc XPP2𝑜XPXP
28 fisseneq PFinXPXPXPXPXPX=P
29 6 19 27 28 syl3anc XPP2𝑜XPX=P
30 29 eqcomd XPP2𝑜P=XPX