Metamath Proof Explorer


Theorem eqgcpbl

Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses eqger.x X=BaseG
eqger.r ˙=G~QGY
eqgcpbl.p +˙=+G
Assertion eqgcpbl YNrmSGrpGA˙CB˙DA+˙B˙C+˙D

Proof

Step Hyp Ref Expression
1 eqger.x X=BaseG
2 eqger.r ˙=G~QGY
3 eqgcpbl.p +˙=+G
4 nsgsubg YNrmSGrpGYSubGrpG
5 4 adantr YNrmSGrpGA˙CB˙DYSubGrpG
6 subgrcl YSubGrpGGGrp
7 5 6 syl YNrmSGrpGA˙CB˙DGGrp
8 simprl YNrmSGrpGA˙CB˙DA˙C
9 1 subgss YSubGrpGYX
10 5 9 syl YNrmSGrpGA˙CB˙DYX
11 eqid invgG=invgG
12 1 11 3 2 eqgval GGrpYXA˙CAXCXinvgGA+˙CY
13 7 10 12 syl2anc YNrmSGrpGA˙CB˙DA˙CAXCXinvgGA+˙CY
14 8 13 mpbid YNrmSGrpGA˙CB˙DAXCXinvgGA+˙CY
15 14 simp1d YNrmSGrpGA˙CB˙DAX
16 simprr YNrmSGrpGA˙CB˙DB˙D
17 1 11 3 2 eqgval GGrpYXB˙DBXDXinvgGB+˙DY
18 7 10 17 syl2anc YNrmSGrpGA˙CB˙DB˙DBXDXinvgGB+˙DY
19 16 18 mpbid YNrmSGrpGA˙CB˙DBXDXinvgGB+˙DY
20 19 simp1d YNrmSGrpGA˙CB˙DBX
21 1 3 grpcl GGrpAXBXA+˙BX
22 7 15 20 21 syl3anc YNrmSGrpGA˙CB˙DA+˙BX
23 14 simp2d YNrmSGrpGA˙CB˙DCX
24 19 simp2d YNrmSGrpGA˙CB˙DDX
25 1 3 grpcl GGrpCXDXC+˙DX
26 7 23 24 25 syl3anc YNrmSGrpGA˙CB˙DC+˙DX
27 1 3 11 grpinvadd GGrpAXBXinvgGA+˙B=invgGB+˙invgGA
28 7 15 20 27 syl3anc YNrmSGrpGA˙CB˙DinvgGA+˙B=invgGB+˙invgGA
29 28 oveq1d YNrmSGrpGA˙CB˙DinvgGA+˙B+˙C+˙D=invgGB+˙invgGA+˙C+˙D
30 1 11 grpinvcl GGrpBXinvgGBX
31 7 20 30 syl2anc YNrmSGrpGA˙CB˙DinvgGBX
32 1 11 grpinvcl GGrpAXinvgGAX
33 7 15 32 syl2anc YNrmSGrpGA˙CB˙DinvgGAX
34 1 3 grpass GGrpinvgGBXinvgGAXC+˙DXinvgGB+˙invgGA+˙C+˙D=invgGB+˙invgGA+˙C+˙D
35 7 31 33 26 34 syl13anc YNrmSGrpGA˙CB˙DinvgGB+˙invgGA+˙C+˙D=invgGB+˙invgGA+˙C+˙D
36 29 35 eqtrd YNrmSGrpGA˙CB˙DinvgGA+˙B+˙C+˙D=invgGB+˙invgGA+˙C+˙D
37 1 3 grpass GGrpinvgGAXCXDXinvgGA+˙C+˙D=invgGA+˙C+˙D
38 7 33 23 24 37 syl13anc YNrmSGrpGA˙CB˙DinvgGA+˙C+˙D=invgGA+˙C+˙D
39 38 oveq1d YNrmSGrpGA˙CB˙DinvgGA+˙C+˙D+˙invgGB=invgGA+˙C+˙D+˙invgGB
40 1 3 grpcl GGrpinvgGAXCXinvgGA+˙CX
41 7 33 23 40 syl3anc YNrmSGrpGA˙CB˙DinvgGA+˙CX
42 1 3 grpass GGrpinvgGA+˙CXDXinvgGBXinvgGA+˙C+˙D+˙invgGB=invgGA+˙C+˙D+˙invgGB
43 7 41 24 31 42 syl13anc YNrmSGrpGA˙CB˙DinvgGA+˙C+˙D+˙invgGB=invgGA+˙C+˙D+˙invgGB
44 39 43 eqtr3d YNrmSGrpGA˙CB˙DinvgGA+˙C+˙D+˙invgGB=invgGA+˙C+˙D+˙invgGB
45 14 simp3d YNrmSGrpGA˙CB˙DinvgGA+˙CY
46 19 simp3d YNrmSGrpGA˙CB˙DinvgGB+˙DY
47 simpl YNrmSGrpGA˙CB˙DYNrmSGrpG
48 1 3 nsgbi YNrmSGrpGinvgGBXDXinvgGB+˙DYD+˙invgGBY
49 47 31 24 48 syl3anc YNrmSGrpGA˙CB˙DinvgGB+˙DYD+˙invgGBY
50 46 49 mpbid YNrmSGrpGA˙CB˙DD+˙invgGBY
51 3 subgcl YSubGrpGinvgGA+˙CYD+˙invgGBYinvgGA+˙C+˙D+˙invgGBY
52 5 45 50 51 syl3anc YNrmSGrpGA˙CB˙DinvgGA+˙C+˙D+˙invgGBY
53 44 52 eqeltrd YNrmSGrpGA˙CB˙DinvgGA+˙C+˙D+˙invgGBY
54 1 3 grpcl GGrpinvgGAXC+˙DXinvgGA+˙C+˙DX
55 7 33 26 54 syl3anc YNrmSGrpGA˙CB˙DinvgGA+˙C+˙DX
56 1 3 nsgbi YNrmSGrpGinvgGA+˙C+˙DXinvgGBXinvgGA+˙C+˙D+˙invgGBYinvgGB+˙invgGA+˙C+˙DY
57 47 55 31 56 syl3anc YNrmSGrpGA˙CB˙DinvgGA+˙C+˙D+˙invgGBYinvgGB+˙invgGA+˙C+˙DY
58 53 57 mpbid YNrmSGrpGA˙CB˙DinvgGB+˙invgGA+˙C+˙DY
59 36 58 eqeltrd YNrmSGrpGA˙CB˙DinvgGA+˙B+˙C+˙DY
60 1 11 3 2 eqgval GGrpYXA+˙B˙C+˙DA+˙BXC+˙DXinvgGA+˙B+˙C+˙DY
61 7 10 60 syl2anc YNrmSGrpGA˙CB˙DA+˙B˙C+˙DA+˙BXC+˙DXinvgGA+˙B+˙C+˙DY
62 22 26 59 61 mpbir3and YNrmSGrpGA˙CB˙DA+˙B˙C+˙D
63 62 ex YNrmSGrpGA˙CB˙DA+˙B˙C+˙D